_AD-A163 195 HIGHLY CONCURRENT SCALAR PROCESSING(U) ILLINOIS UNIV AT 1/2
v URBANA COORDINRTED SCIENCE LAB P Y HSU JAN 86
UILU-ENG-86-2203 N00014-84-C-0149
UNCLRSSIFIED F/G 9/2 NL

 EEE

EEEFITIPR

20l =l

Iz s nis
= lli==
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

............

January 1986 / ’g UILU-ENG-86-2203
- CSG-49

Ve
s
‘ r‘,e, L
y
..
e
¥

———
[

COORDINATED SCIENCE LABORATORY

Cullege of Engineering

S EEOOCEN - |
AD-A163 195

HIGHLY CONCURRENT
SCALAR PROCESSING

N
t o
g o
. Peter Yan-Tek Hsu
- -
1 =
> DTIC
i 2 ELECTE 2
! & JAN 1 71986 -
ET'-' = > A .
. [~ g :{Ifis .d_o‘c‘umem has been approve R
i B o F
:L UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
’ l Approved for Public Release. Distribution Unlimited. - r% 3 L .

BRI S St R A 3 S e Dl ety A PR K el » - g 1\ g i LA UROT WYY -

QECUMITY CLASSIFICATION OF THIS PAGE el

' REPORT DOCUMENTATION PAGE Y
1a. REPORT SECURITY CLASSIFICATION b, RESTRICTIVE MARKINGS ‘ 'i ’
unclassified none *k:'
2e. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT
none Approved for public release; “'
25. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited JAN 1 7 g6l ..
N/A X
4. PEAFOAMING ORGANIZATION REPORT NUMBER1S) . MONITORING ORGANIZATION REPORT NUM :;::‘r’
k!
UILU-ENG-86-2203 (CSG 49) N/A A L:.
6a NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION e
Coordinated Science Laboratory (1f applicabie) l. Joint Services Electronics Program
niversity of Illinois N/A 2. Naval Electronics Systems Command VHSIC Program 2
6c. ADDRESS (City. State and ZIP Code) 75. ADORESS (City, State and ZIP Cade) .
JSEP: Office of Naval Research; 800 Quincy -]
1101 W. Springfield Avenue Street; Arlington, VA T
Urbana, IL 61801 VHSIC: 25%& Jsggsgson Davis Highway, Arlxngton, S
fa. NAME OF sunmnlc/srousé:muf £ 80. OFFICE SYMBOL |9. PROCUREMENT INSTRAUMENT IDENTISICATION NUMBER 1 e ~
ORGANIZATION Joint Services Elec (17 applicabia)
ronics Program; Naval Electronics JSEP: NOOQ14-84-C-0149 :::1
Svstem ommand VHSIC Program N/A YHSIC: NQQU39-80-C-0556 --.':-..':
8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS. R
JSEP: Office of Naval Research; 800 Quincy St. PROGRAM PROJECT TASK wOAK UNIT § .
ol Arlington, VA 22217 ; ELEMENT NO. NO. NO. NO. e
- SIC 2511 Jefferson Davis Highway, Arlington,
S . VA 22202 .\h_\
§ 411 TITLE 'Inciude Security Classificstion) :-t.-.T
3 Highlv Concurrent Scalar Processing N/A N/A N/A N/A ST
. 12. PEASONAL AUTHOR(S) 23
Peter Yan-Tek Hsu A
13a TYPE OF REPORT 138, TIME COVERED 14. OATE OF RERORT (Y. Mo.. Day) 1S. PAGE COUNT N
FROM TO January, 1986 119)
18. SUPPLEMENTARY NOTATION :-:.:\:‘
)
\:_\‘_
COSATI CODES 18. SUBJECT TEAMS (Conanue on reverse i necessary and identify oy dlock number) '::Z}a
GAOUP Sus. GA. compiling, scheduling, optimization, parallel processing, i
pipelined processing, horizontal architectures, PRy

5

>
4
;

{) guarded instructions

ABSTRACT (Cantinue on reverse :/ necessary and identify by dlock numbder)

.~ High speed scalar processing is an essential characteristic of high performance general

purpose computer svstems. Efficient concurrent executicn of scalar code is difficult due

to data dependencies and conditional branches. This thesis proposes a code scheduling heur-

istic called the’decision tree scheduling (DTS) technique for general scalar code, and an

optimal code schedvuiing algorithm called the’simple loop scheduling (SLS) algorithm for a

restricted class of innermost loops. Also proposed is a highly concurrent machine archi-

tecture that takes advantage of these scheduling techniques. . .. a2 gy
The DTS techniqie performs extensive code rearrangement over a comple of basic blocks

to achieve high levels of speedup. This technique is based on a software implementation of

well-known hardware speedup techniques for instruction pipelines, including out-of-order

e

\

A ey

A

it)
’ .
p

(4

y ¢ T TV T
. - il

TR

.,y
I
r
2
Lol

J

¢ o
N—
s, 0, py, e e a
O] ¢ fe PP hee . i R
! R .‘.. S PR A
y Yot A 8 ' TR K
O, ey . - et

¥

execution, branch prediction, and branch lookahead with conditional execution. To suppor

P
efela v
s e

the DTS technique we propose an architectural concept called guarded instructions. Gu

Y -
v % ' %
et

.
~ store instructions enhance a compiler's ability to reorder loads and stores so as_te’ in- A
1 _crease the level of concurrencv. Guarded jump instructions allow the executioh of conditicnall r.‘.q
K 20. CISTRIBUTICN/AVAILABILITY CF A3STRACT 21. ABSTRACT SECURITY CLASSIFICATION e
n"' VT --1
L:: Yo unCLASSIFIED/UNLIMITED K SAME AS APT. _ OTiC USEAS - "f/r 12 Loy, JA T \f'-‘.’.-':
S unclassified : JAP g s s
- .

Yoy o, —
23c. CRFICH 3YWMeCE - —

\f)ww U:«,L\rf Jse.a

§22a NAME SF AESPONSIBLE INDIVISUAL 22n. TELEPWCNE NUMBER

‘Inciude Ava Coge,

Bt N
-~ LN

DD FORM 1473, 83 APR

EOITION OF 1 JAN 73 1S C3SOLETE.

........................

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

branches to be overlapped, thereby significantly reducing the average branch time. Per-
formance evaluation of the DTS technique based on realistic but problematic workloads drawn
from the UNIX kernel and other sources are presented.

The SLS algorithm exploits the regular structure of simple innermost loops to generate
optimal throughput loop code. This approach is an adaptation and extension of the theory
on optimal design of hardware pipelines. This algorithm is shown to be of optimal com-
plexity, and highly efficient in practice. Related issues of register assignment and
branch handling are discussed and resolved.

The proposed scheduling techniques are most useful for highly concurrent architectures; l
both parallelism and nivelining can be exploited efficiently. A tightly coupled hetero-
geneous multiprocessor with appropriate support for the DTS and SLS techniques is presented.sa
This multiprocessor can be implemented using currently available technology, and is suffic-
iently flexible to accommodate both general purpose processors and specialized functional
units, with an appropriate mix of parallelism and pipelining. System configurations can
be adapted to resolve cost-performance tradeoffs for particular applications and technol-
ogies.

e
[Py

s
"

Yl P

o
"

S . ¢~

e . R R T

ph ey,

- -

3

“ 7
.

et TEEEA A M A, L AR T

BTt e T T e e e et T T e .‘s'\-._ .’_‘.' PO R AR S LA
-« lt.?ug"q.‘{\.' PR R AL L AL AR PV L L AT A DS S R R Tt

HIGHLY CONCURRENT SCALAR PROCESSING

aY

BY
PETER YAN-TEK HSU

B.C.S.. University of Minnesota. 1979
M.S.. University of [llinois, 1982

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champeign, 1936

e amre e
Urbana, Illinois L
o
l bty Cones
Al
. A‘\‘,h! \::/Or
S,tc\‘,u'

w~ 0y Sty XY

-

Na

HIGHLY CONCURRENT SCALAR PROCESSING

Peter Yan-Tek Hsu, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 1986
Edward Davidson, Advisor

High speed scalar processing is an essential characteristic of high performance gen-
eral purpose computer systems. Efficient concurrent execution of scalar code is difficult
due to data dependencies and conditional branches. This thesis proposes a code schedul-
ing heuristic called the decision tree scheduling (DTS) technique for general scalar code,
and an optimal code scheduling algorithm called the simple loop scheduling (SLS) algo-

rithm for a restricted class of innermost loops. Also proposed is a highly concurrent '

machine architecture that takes advantage of these scheduling techniques.

The DTS technique performs extensive code rearrangement over a complex of basic
blocks to achieve high levels of speedup. This technique is based on a software imple-
mentation of well-known hardware speedup techniques for instruction pipelines,
including out-of-order execution, branch prediction, and branch lookahead with condi-
tional execution. To support the DTS technique we propose an architectural concept
called guarded instructions. Guarded store instructions enhance a compiler’s ability to
reorder loads and stores so as to increase the level of concurrency. Guarded jump
instructions allow the execution of conditional branches to be overlapped, thereby
significantly reducing the average branch time. Performance evaluation of the DTS

technique based on realistic but problematic workloads drawn from the UNIX kernel

and other sources are presented.

W TR R LU T R AL AL S TS W Sy L S WACERCY LT TRy N N N N T N L N TNy N Ty

= iv
. The SLS algorithm exploits the regular structure of simple innermost loops to gen-
d
: :-': erate optimal throughput loop code. This approach is an adaptation and extension of
[0 ¥
b the theory on optimal design of hardware pipelines. This algorithm is shown to be of

E optimal complexzity, and highly efficient in practice. Related issues of register assign- s
M ment and branch handling are discussed and resolved. ; (}

The proposed scheduling techniques are most useful for highly concurrent archi-

tectures; both parallelism and pipelining can be exploited efficiently. A tightly coupled

N heterogeneous multiprocessor with appropriate support for the DTS and SLS techniques
.», is presented. This multiprocessor can be implemented using currently available tech- .':Tx:
g nology, and is sufficiently flexible to accommodate both general purpose processors and
& specialized functional units, with an appropriate mix of parallelism and pipelining. ::
: i System configurations can be adapted to resolve cost-performance tradeoffs for particu- E:;
lar applications and technologies. NI

5

.
P' .

Ar

U L I S L I
B PR
v e ® e e
v e PR PR
s P R N
’ . PP T T A A
. . “ry % fe % Ve Te e v g
» " PRTE R B B 3)

Bl P W % R " Na 2 S0 Sige ¥ Bhy Bl Ebn B W R D kb o

ACKNOWLEDGEMENT

o

I am deeply grateful to my thesis advisor, Professor Edward Davidson, for his

At
0
”
2
%,

understanding and encouragement. His insightful guidance has been essential to this 2

by 4 N
*

oy
'l

work, and his friendship has made the effort most enjoyable. G

1 wish to express my gratitude to my previous advisors, Professor Michael -;’-,,

o‘_\ #

* _\._

Schlansker and Professor B. R. Rau, for their helpful suggestions in the initial part of ::-::.{

St
] this research. S5t

I would like to thank my examination committee, Professors Campbell, Kuck, .‘S:Z
Lawrie, and Patel, for their time and helpful comments. I would also like to thank my .::“.
. colleagues and the secretaries in the Computer Systems Group of the Coordinated Sci- F)

-
ence Laboratory for their assistance. Ery

I am very grateful to my wife Mary Prisco for her patience and support. I also Sged

[[- .
.
7’

S B
_: thank my parents for their encouragement. a

RACS
]
B SRR

.
. .
;_' ~.'.--
. o
v Sy
e -
. .
P‘A aury R
»
;L o
'.’ s -.~.h“
_.v n.. --.
. NS
o _.:_.
l.. i.‘ b--
. e Lt
. LY
; =

‘w, °,
.

‘e a_ 2 v
f‘"“l‘ 'n"/ ".
a v e e 0 ",
Ya'a wi

-,
e
»

)
L

T T A e T R T A N
PRSI AP S T SR MONT Tacte

S L |

FIOA A

PRl LF A

T T YT

2 4
.‘-

oy |

) Tl R TSN T 0 e e B P Pl 3 g ipe P gt e mnb P, Ay S s d or e a b A S Sk A Ras

TABLE OF CONTENTS

1 INTRODUCTION

1.1.
1.2

Motivation and Research Objective
Overview of this Work

2 SCHEDULING SCALAR CODE

2.1,
22,
2.3.
2.4.
2.35.

Introduction

Motivation for the Scalar Processing Problem
Architectural Support for Scalar Processing

The Decision Tree Scheduling Technique

Performance Evaluation

3 SCHEDULING SIMPLE LOOPS FOR OPTIMAL THROUGHPUT

3.1
3.2.

3.3,

34.
3.3.

Introduction

Architectures and Loop Performance

3.2.1. Scalar Architectures

3.2.2. Vector Architectures

3.2.3. Multiprocessor Architectures
3.2.4. Horizontal Architectures

3.2.5. Summary

Scheduling Graphs with Acyclic Dependencies

3.3.1. The Available Resource Limit Constraint

3.3.2. Startup Time and Scheduling Complexity

3.3.3. Summary

Scheduling Graphs with Self-Loop Dependencies
Scheduling Graphs with General Dependencies

3.5.1. Formulation of the Optimization Problem
3.5.2. Initiation Interval Extension Thecrem

3.5.3. The Simple Loop Scheduling Algorithm

3.5.4. Example of Schedule Generation by the SLS Algorithm
3.5.5. Summary

4 MACHINE ORGANIZATION AND CODE GENERATION ISSUES

4.1.
4.2.
4.3.
4.4,
4.5.

Introduction

Processors and Memory System Design
Storage-Enhanced Crossbar Interconnect Design

Control Unit Design
Machine Parameters

Page

f -8

12
19
30

35
36
41
42
44
47
51
52
52
58
63
64
66
69
71
74
78
80

83
85
838
91
93

T

Y
.Y
..'\

~ .Y
w0y
1

Y
S I

P

» I“'

e .
., ‘1...

r
bt 2 g

v "
’

-
.
4

",
.l

T, ",
. et L
y ‘s P
P Tk T
ey N e e
ad

PN

E Sty
.‘l'.-"l ..n‘ ':’ o oy A, 4
.'. et T .

“e

i
.I'O

g

'y
LA

Vel

&

4.6. Register Assignment Issues
4.7. Architectural Considerations for Delayed Branches

CONCLUSIONS
5.1. Summary of Results

5.2. Suggestions for Future Research

REFERENCES

VITA

95
98

103
105

107

110

LTI
B I
;'.' Y
At te ‘e afa s R

DAL
e]
ate et

. G

- e e e

'.'u'v"o P

PR L

K [LEE L

[AR el
P

‘y
»_»

o
’s
ala

"“u ey
"

-7

s A A
P M)
D AR
) AL TSI

N 1. TS

(n [AT N
. v
e .)
.

D

v e

., .t

e, Y ,,/"
v e,

., .:‘0 :ﬁ.

. d

- LIST OF TABLES 5

2.1. Node priorities for path probabilities (1/8, 1/8, 1/8, 1/2, 1/8) ...ccccouecuee 26

1

h]
O

[
g

APt AL
g

- 2.2. Expected execution time and speedup for asymmetric probabilities 26 el
S 2.3. Performance of linked binary tree search 32 ;:f::

2.4. Performance of quicksort algorithm 33
2.5. Performance of vmsched.c from the UNIX kernel 33

. .j" ':-(:\
T 2.6. Performance of hydro excerpt from Livermore benchmarksc.cccceeneeene 33 r “‘
. RS
:. r : ': -
® -
| 4 .
oo
X s
R s
- =
i :_‘I:lf;'
o oy
= MR
£
% T
ot e
- ol
-
-:'J
C r
- e
S AT
. o
e)
N N
. o
':. i .._:\.:\:
& -

LA

TRAT

v,

‘v

[

pro

2.1,
2.2,
2.3.
2.4,
2.5.
2.6.
2.7.
2.8.
2.9.

2.10.
2.11.
2.12.
2.13.
2.14.

3.1.
3.2.
3.3,
3.4,
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.

LIST OF FIGURES

Example of decision tree in source language
Assembly language level representation of decision tree
Optimum execution schedule for short instruction pipelineccccocec.ece
Optimum execution schedule for long instruction pipeline
Improved schedule using guarded store and jump instructionscee.e...
Pipeline operation showing overlapped guarded jumps
Dependency graph representation of decision tree
Decision tree scheduling procedure
Heuristic computation for paths 1 and 2
Heuristic computation for paths 3, 4, and §
Execution schedule for path probabilities (1/8, 1/8, 1/8, 172, 1/8)
Execution schedule for two instructions per cycle
Execution schedule for four instructions per cycle
Use of code replication to produce larger decision trees
Example of simple loop in source language
Data structures in simple loop
Assembly level representation of simple loop
Dependency graph for simple loop
Scalar processor schedule for one iteration of the loop
Example of vectorization by loop distribution
Multiprocessor schedule for three iterations of the loop
Horizontal architecture schedule for one iteration of the loopccceeueeuuen
Horizontal architecture schedule showing iteration overlap
Example of acyclic data dependency graph
Algorithm A: optimal throughput schedule for acyclic graphs
Schedule for acyclic dependency graph
Modulo reservation table for acyclic graph schedule
Optimal throughput schedule with shorter length
Algorithm B: minimum complexity optimal throughput schedule
Optimal throughput schedule from algorithm B
Example of induction variable generation
Example of multinode recurrence
Example of separately scheduled multinode recurrencescccceeevrrueenens
Formulation of the optimal scheduling problem

Algorithm C: simple loop scheduling algorithm
MII schedule for multinode recurrences

N ST
p S e
. R
a A

l."l' ""‘la-'.l

!" l;)' II'J!";;

""."I _L!,,.’ -0

2

AN

r
ite 2 s

ST SN
LT ’

. +r e -
,‘ . 1. . Ay
. i

F . SR
Pl e
‘L STt e
. R

(4
"

i alate Al

»
*

- e e ” yow, .
PN L A
R PPt e
LA [
S Al

3.23.
3.24.
4.1.
4.2.
4.3.
4.4.
4.5.

RPN AN S S AR DA A PR R A e

Schedule after R, has been delayed .

Complete optimal throughput schedule

Block diagram of a THUMPER configuration
Architectural view of register file

Horizontal instruction format

Detailed representation of a loop schedule

Complete schedule with register assignments

80
80
84
90
91
97
99

.
° -

;

<
e

o

A
PRI LA,

|5

s,

.‘ﬂ. e
PPN AR .
E CRRC R D LAY

ma(YA

CHAPTER 1

INTRODUCTION

1.1. Motivation and Research Objective

There is unquestionably a need for high-speed general-purpose computer systems:
the range of applications handled by computers as well as the volume of data processed
by computers is continuously increasing. Advances in circuit technology have resulted
in dramatic performance improvements. However, circuit technology advances alone

have proven insufficient in satisfying the increasing demand for higher performance.

By providing a high degree of concurrency through parallelism and pipelining,
modern supercomputers are capable of delivering significantly higher performance for
applications dominated by numerical computations. In contrast, the extensive use of
concurrency to achieve higher performance for applications dominated by nonnumeric

or symbolic computations hag met with only limited success.

The objective of this research is to investigate new techniques that use con-
currency to improve the performance of nonnumeric/symbolic computation-intensive
applications. The approach taken by this research is an integrated design philosophy in
which the machine organization and instruction set architecture are developed in con-

junction with the development of the compiler’s code generation strategy.

1.2. Overview of this Work

This work is concerned with achieving highly concurrent processing of scalar code,
i.e. code without vector instructions. Concurrency is most easily obtained for code that

is readily vectorizable. Inherently scalar code, i.e. code that cannot be vectorized,

- R P
e Ye'ala" i AR RN
A T e

. ST f
A LA AT

. R
% B SRS = il ' Yo e
ket gl .

¥y » T
f'f
MY

P }
1 »

]
v
L3

2
»

’ l’l"
. _»

Bt

a
»

T RINN

'.. /, '.._". _,!."’-"

causes severe performance degradation in most concurrent machines. Such code occurs
to some extent in all applications and dominates in nonnumeric and symbolic applica-

tions. Inherently scalar code is often characterized by

(i) prolific use of data-dependent conditional branches with very little computation

between successive branches, and

(ii) use of linked data structures with memory address pointers, as opposed to array
dafa structures with integer indices.

We have developed compiler code generation techniques, architectural support features.

and a machine organization that specifically addresses the problems of highly con-

current scalar computation.

Chapter 2 focuses on the problem of conditional branches. In this chapter we pro-
pose a code generation heuristic. called the decision tree scheduling (DTS) technique,
that performs extensive code rearrangement over a complex of basic blocks to achieve
high levels of speedup. The DTS technique is based on a software implementation of
well-known hardware speedup techniques for instruction pipelines, including out-of-

order execution, branch prediction, and branch lookahead with conditional execution.

To support the DTS technique we propose an architectural concept called guarded
instructions. Guarded store instructions enhance a compiler’s ability to reorder loads
and stores, thus increasing the average level of concurrency. Guarded jump instructions
allow the execution of conditional branches to overlap, significantly reducing the aver-

age time per transfer of control.

The DTS technique is most useful for highly concurrent architectures; both paral-
lelism and pipelining can be exploited efficiently. We present performance evaluation of

the DTS technique based on realistic but problematic workloads drawn from the UNIX

kernel and other sources. This evaluation is performed by evaluating concurrency

LI

e

'..-_'an

v s
<o
a8

1 v, e
AR oY

(3

'
1

LA

e

=13

..,,
7

»

o7 R

LY
’
!

l: ':',':_-‘: AN
P A0 (‘;":“:‘5 .

.
v

r

-
*r

oy
".E:v'.r' [}
5

,
ety ’Olt';‘
RS QSN

. Se e s U T
\ P CA
e o 0 Tl

e« « Oy e e
st v)
. - ., o

r v
£,
%

v}

*
»

.ty e

PRI

PR
o s %%
R ICPUAPLIN

K
(% A

k|

4 e

relative to a Cray-1-like scalar unit by considering a pipelined processor with similar

timing and the capability of issuing one or more instructions per clock cycle.

Chapter 3 focuses on the problem of code generation for program loops, with a
running example that manipulates linked data structures. Because the traversal of
linked data structures introduces special problems, conventional loop-speedup tech-
niques such as vectorization and multitasking are shown to be unusable and/or less
cost-effective. In this chapter we present a code generation algorithm, called the simple
loop scheduling (SLS) algorithm, that generates throughput-optimal loop code for a class
of loops that does not contain nested conditional statements. The significance of
throughput-optimal loop code is that, while the loop is executing in steady-state, peak
performance is continuously maintained.

Chapters 2 and 3 deal primarily with compiler-based code optimization tech-
niques. These code optimization techniques were developed based on a fairly detailed
machine model. Chapter 4 describes the machine model and discusses implementation
considerations that motivated the particular choice of machine organization. Several
machine dependent code generation issues, including the problem of register allocation,
are also discussed in this chapter.

The main results of this research are summarized in chapter 5. In this chapter we

also present some suggestions for future research in this area.

Y
X

"V

"
-

e v .
(4 (R I
e
{-.o v,

e AN

j WD

v

- r -
s,

v

o

Y
o

v v o
e %A N 0.
/l.‘lll.‘

a8

CXA

WA A
PR R A
2

3
-
.I
.

CHAPTER 2

SCHEDULING SCALAR CODE

2.1. Introduction o

High speed scalar processing is an essential characteristic of high performance gen-
eral purpose computer systems. Pipelined instruction execution is the standard method
for increasing scalar performance beyond performance levels achievable by fast logic
technology alone{1, 2]. Unfortunately. the potential throughput of instruction pipelines

is rarely achieved because scalar code usually contains many data dependencies and

conditional branches. These disrupt the smooth flow of instructions which causes the

E

pipeline to be underutilized, leading to performance degradation. Ny ;:E

Many techniques have been proposed for improving the throughput of instruction t. E:_:'U

pipelines. Well known techniques include out-of-order execution[3], branch predic- n %

tion{4], and branch lookahead (conditional issue of further instructions while awaiting ToE

branch outcomes)[2]. Although effective, implementing these techniques via hardware -“'

increases the complexity of pipeline control and usually causes the clock cycle to be - E

lengthened as well. Thus the performance advantage gained by increasing the pipeline N E-"

utilization by such techniques is degraded by both an increase in cost and a reduction in i~

the clock speed. ~ L:

In this chapter, we propose a software implementation of these techniques., with \\

modest hardware support, that minimizes these disadvantages. This approach relies on - ,.:J

an integrated design philosophy in which the machine architecture is developed in con- ﬁ Ef

: junction with the development of the compiler’s code generation strategy. This idea e ‘;

t represents an extension of similar philosophies reported in the literature for processors ',:"

' NoE
-

A

»
-

o« 8 QRS)

TR
N R

s,

- "
YWY

with very short instruction pipelines (in the range of two to four seg-

ments)($. 6. 7.8.9).

The ideas of this chapter naturally extend to much longer instruction pipelines
and multiple-pipeline parallel architectures. The potential throughput of an instruction
pipeline is increased by partitioning the instruction pipeline into more segments with
finer granularity, thereby increasing the length of the pipeline but speeding up the
clock. Delivered performance rarely approaches the potentially higher instruction issue
rate of longer pipelines due to the increased difficulty of efficiently utilizing a longer
pipeline. The instruction set modifications, their hardware support, and the code optim-
ization techniques proposed here are most useful for such highly-concurrent scalar

architectures.

2.2. Motivation for the Scalar Processing Problem

Program structure is perhaps best characterized by a program graph whose nodes
represent basic blocks and whose arcs represent control flow from block to block. A
basic.block is a maximal set of instructions such that every instruction in the block is
executed exactly once each time the block is entered. Efficient concurrent execution is
difficult to achieve since basic blocks typically
(i) have few instructions, e.g. three to six{4, 10],
(ii) bave internal data dependencies{11], and

(iii) have a branch instruction at the end[12].

Scalar code optimization is typically performed at the block level. but little optimiza-
tion can be performed with few instructions. Data dependencies limit concurrency in
pipelines. Branch instructions have embedded dependencies in the tests for conditional

branches and create delay or uncertainty in selecting the next block for execution.

. - - v ., LR SR BESREE R]
[. Pady LAy o0, 0 0" lale A *,
-y, CCCEEIRY b DA s ORI . s "o
e tet. - o' - 8., DR)
. L) ’ . . I 4 L PR L.
DA A " e 1 e v, e h o F
LW e e e e i cataleta’ ¥ * gL . ’ . L ratal

o
X’

1
-

RAANN
GO
PR A

=

SRV VT T W VLWL RAT ST PL Y LD YR WL TR

Thus effective optimization techniques must consider a complex of multiple

ufau'.g

"

blocks. A convenient representation of such a complex is a decision tree. Without loss

=

ol

Al

of generality, we consider binary decision trees of basic blocks, where each interior

block terminates in a two-way conditional branch and each exterior block terminates in 5:‘3
an unconditional branch to the root of another decision tree.)
Consider the binary decision tree shown in figure 2.1, written in the language C.
This simple example is representative of many nonnumeric programs in that conditional =
struct {
int A.B.C: <
} oz, vy 2
if(x—=A <=1){ .
if(x =B <=8){ t
y—=C =10;
goto Z;
} else {
x=C =9;
) gotoY:
} else { :
if(y-+A <=2){ '
x=C=T
goto X ; o
} else {
x =B =3;
if(y=B <=4){ .
- y=C =6
- .
. goto W;
o } else {
x—=C =5; I
goto V; "

\':'
Figure 2.1. Example of decision tree in source language. =

statements are frequently nested and assignment statements are extremely simple.
Although in this example the leaves of the decision tree terminate in goto statements,

they could also represent procedure calls.

In order to discuss performance issues, this source level program fragment must be
compiled into machine language. We chose to use a load/store architec-
ture(1, 5. 6, 7, 8, 9] because, by explicitly separating memory references from computa-
tions, the compiler has greater flexibility in rearranging instructions to improve pipeline
utilization. We also chose to avoid conditional codes by using comparison instructions
that produce a boolean value in a register{7], thereby eliminating the constraint that the
comparison instruction must immediately precede the conditional branch instruction

that uses its result.

An assembly language representation of this program fragment is shown in
figure 2.2. Loads are shown as “a « A(x)" where the address is specified by base

a ~ A(x)
be~a<g1
c:if(d) jump |

d ~ A(y) q ~ B(x)

e ~2 X2 regss8

f:if(e) jump 7 .r:if(r)jump—l
g:B(x)~3 0:0(x) =7 t:C(x) -9 v:C(y) ~ 10
h ~ B(y) pigoto X u:goto Y w:goto Z
i=h €4

j:if(i)jump—l

k:C(x) ~5 m:C(y)~6

l:goto vV n:goto W

Figure 2.2. Assembly language level representation of decision tree.

...

...................

.....

......

register x with displacement‘A and the content is placed in temporary register . Simi-
larly, stores are shown as “C(x) «~ 5. Comparisons are shown as “b «~a < 1" where
b receives the boolean result of the a € 1 test. Conditional branches on boolean values
are shown as “if(&) jump" where the destination of a taken branch is shown by a line.
Labels, such as “c:” in the first branch instruction, have been given so that every
instruction can be identified either by the result register name or by the label. This

notation facilitates understanding of code rearrangements in later examples.

Suppose this code was optimized to run on a machine with a very short instruction

pipeline such as the RISC-1 microprocessor(6]. This microprocessor performs a load or
delayed branch instruction in two cycles and all other instructions in one cycle. Fig-
ure 2.3 shows the execution schedule of the example program on this machine. In this
figure the time in clock cycles appears at the left. The completion time for each path

through the decision tree is given by the issue time of the pseudo-instruction

bt b b d b b \D 08 3 ON A w [
hWhe=O » it ©e

a -~ Ax)

d ~ A(y)

bew=as1

c:if(d) jump]

‘h‘(i $)2 E— B(x)

f:if(e) jump g -~ B(x
¢ ¢

g:B(x)~3 pigoto X re—g<8

h « B(y) 0:0(zx) =7 ::if(r)jumpj
¢ —done — L/

i—h <4 u:gotoY w:goto Z
j:if(i)ju.mp-l t:C(x)~9 v:C(y) ~ 10
¢ —done — —~done —
l:goto V n:goto W
k:C(x)=5 m:C(y)~6
—done -~ ~done —

Figure 2.3. Optimum execution schedule for short instruction pipeline.

.......

. e
o

vah)

.t
NG
e,

,

e S,
. :
. B
. e T
- SR

RO
R
v e
- Wt e
et ey
- .y

-

LR

r. A
a e PRI
Ce et e
- LR
i P
s

[L)

—

- <o
&

S e e e e . N
. . LR
o ! S PR .
v 4 et T . Lo

PR . . . ' .

R T T e e LT e e
R . AR

Y PSP RPEPN PPV TS IR I IR AT)

e,

L

.................

| E i e O A I M e S A S R A AR aL A G b P ol S AT S I I A S S i R S S e B o i L i Lt bt st

“—done —". Note that a two cycle load instruction, such as d, can be overlapped with
another unrelated instruction, 5. The load instruction &, however, is followed only by

instructions that depend directly or indirectly on the result of the load; thus no instruc-

tion can be be overlapped with A and a no-operation instruction, ¢, must be inserted.

s

O]
[NLNEN n":. %,
¢ 0',.

The RISC-1 microprocessor uses delayed branches with length one. In general, a

delayed branch with length n means that the n instructions following a branch are .:'-'_.'::
Y]

always executed regardless of whether the branch is taken[13]. We call the n instruc- E"‘"-}
AL

tions following a branch the delayed part of that branch. Thus instruction e is in the f‘:::ji'
‘&

delayed part of branch ¢. Similarly, instruction & following the unconditional branch

l is executed prior to the actual transfer of control.

The code sequence shown in figure 2.3 has been optimized to take maximum
. advantage of concurrency in the pipeline. The load instruction d has been moved up to
fill the delay between the load instruction a and the dependent comparison instruction

b. Similarly, the comparison instruction e has been moved up into the delayed part of

branch ¢, and the store instructions £, m, 0, ¢, and v have been moved down into the

€

THEECSSYYS T
r'

delayed part of the logically succeeding unr.onditional branches.

Ml AhhanASd LRI IGCRAOASS 9 |
'i ! I'd
" .:IL

In general, the execution time through a decision tree is dependent on which path

is taken through the tree. If the probability of taking path i is p; and the execution

time of path i is¢;, then one measure of performance is the expected execution time

ET]= St

im]

'
v
ae
Lot .
PO T Y I

g .'
’

’

where M is the total number of paths :hrough the decision tree. For figure 2.3, if each

TR
XA
WA

l' »
W)

path is equally likely, the expected execution time in cycles on a RISC-1 microprocessor

r:"u
oty
)

k.."_"";“_"‘_"‘,‘ e % And o e Mstn Al ute aatiy Ry Wi griy Ity “Rin pth S i~ s Suth Aasioat et il it d D MY I AT TR S SO SR A O S R
2 .
> <
_
]
\‘f ~l
Y J
~ o
»:: lo -
- El Tpisc] =02 (15 + 15+ 9+ 12 + 12) = 12.6 (clocks) &
8 X
:::; For this example, relatively high utilization (few ¢ cycles) is achieved when the >
'. machine has a very short pipeline. On the other hand, short pipelines offer little con- o
EZ’_ currency. and thus can achieve only relatively low performance. In order to quantify
:j: achieved performance. a lower bound on the expected execution time can be derived by
. assuming an infinite resource dataflow machine. Since data flow uses the assignment of
~

C:I: values to trigger dependent instructions, no interior jumps are needed. Thus instruc- ::'.-
tionsc, f, j, and 5 are deleted. However, since the schedule is for one decision tree :
j only. the exterior gofo's. . n, p, u, and w, are retained. With infinite resources, per- &
::;: formance is limited only by data dependencies. Using RISC-1 timing, the execution }
;j; schedule for this example on an infinite resource dataflow machine is as follows.
- 0 a,d.q t <
- 2 b.e.r - 1
AL 3 g.0.p.t.u.v.w ' o
-': 4 h _:. ‘:
5 end of paths 3. 4, and § o
A 6 o -
- 7 k.l.m.n S
: 5 ey

9 end of paths 1 and 2 o b
S
. AN
5 The lower bound on the expected execution time is therefore - E 3
: = ‘

El LBpioc]1 = 0.2 (9+9+545+5) = 6.6 (clocks)
- SRR
< The performance ratio is defined as o ;

1
. = = = - = 52%
E[LBusx]

Using this metric, the RISC-1 microprocessor achieves a performance level that is only

o TR
o
Sl

- Lo
::l' about half of the performance level theoretically possible in an infinite resource B _".-‘_:f-:
8 o
) ©

A e
- iy 11 -
- X
i ‘ dataflow machine. .
5 . 0 2
. ‘ol
W Suppose that in an attempt to increase the performance of the machine, the clock :_:3:-
. o
i - speed is increased by a factor of four, causing the instruction pipeline to become four S
,; L times as long. There is now a possibility of four times the concurrency, but the load AL
. roe
) and branch instructions take eight cycles to complete while all other instructions take j'.: ~j'.;
- four cycles. Figure 2.4 shows the execution schedule for the same example decision s
b
-I_ tree. The expected execution time, assuming again that all paths are equally likely, is Ry
- El Tppe] = 0.2 (57 + 57 + 36 + 36 + 36) = 44.4 (4X clocks)
S . e
- Therefore the speedup is
AE Tusc] _ 504 i
SEres = ETpm] ~ 44 P i
A _,\
. . and the performance ratio is s
Puirrps) _ 4ElLBusc] _ 264 _ oo S
: P LByrec E Torrx I 44.4 .;*:::
'_ t This speedup is very small in spite of the fact that figure 2.4 has been hand coded for G
f-‘_ optimal instruction overlap. Note that the speedup calculation for lengtheuning the pipe- :._:::
:. line by a factor of four does not take into account the overhead represented by a clock ’
-1 L[]
= speedup of less than a factor of four due to the additional latching necessary to imple-
ment a pipeline with finer granularity{14]. For this example even a small amount of iff‘:zfj’

overhead, i.e. a clock speedup of less than 3.524, will cause the speedup to become less

. -
N than one. o

For scalar code, simply increasing the pipeline length is rarely a viable approach to e

. f“ achieving higher performance. The main problem is that, because basic tlocks in scalar r+

- code tend to be short and contain dependencies, there simply are not enough indepen- ~1
dent instructions to make use of a high degree of concurrency. - -

’ * - - ~ A . - - -
R LR A N PR L S o
R I R el I RS S IS N

R B T Sy T AP A Senin L o oS i g G A “Bhy Bie b 4n BOn b 4u i Whe B fan i 08 P\ Y Nt J
‘e ."-
LIS

- \’~
Cor

12

WO

a ~ A(x)

d ~ A(y)

¢ ~ B(x)
@

be~a<i1
e—d £2
re—q <8

®
¢:if(5) jump
")

f:¢if(e)jump——-|

g:B(x) ~3 p:goto X
h < B(y) 0:C(x) ~ 7
¢ ¢

¢ —~done —
i~h £4
¢

j=g(i)jump'l

l:gotoV n:goto W
E:Cx)~=5 m:Cly)=~6
¢ 4

—done ~ ~done —

::g(r)jump—]

u:gotoY w:goto Z
t:C(x) ~9 v:C(y) ~ 10
¢ ¢

—done — —done —

Figure 2.4. Optimum execution schedule for long instruction pipeline.

2.3. Architectural Support for Scalar Processing

In an instruction pipeline, no-operation cycles (¢) are inserted either by

hardware{1] or by software{8] whenever necessary to insure that data and/or control

flow dependencies are met. Some of these dependencies are “rval™ in the sense that they

are inherent in the program as expressed by the programmer. For example, in figure 2.4

T

AAA

RAS

-tty

g
2

ul"’ ’

. g
e

by

\
o
LY
.Y

v v'v’

v
'.'-.'c'-

~

Yo
ol

. .'.J‘v""-v" o
.
DA

. v
Ery V' S
g 5

7)
s, 8,0
aa Xaa'ad

PN
Y
PP ORI

"

¥ R Ny)

. RO

» P N A
o e S e e

s G e,

- ." LI

P
o
.".' ':‘k"'n":‘

N,
L)

3

R N PR
.‘,‘.l/l"

. {. R

-
-
LY
-
N
\-
e ®
o

I TR S R R —

e
.
a®
.

S 13 ":::\

. AP N

! the five ¢'s at times 3-7 are necessary because of the dependency through the register a

between the instructions at times O and 8 and the availability of only two instructions

P s
e’

l‘,'_l'_l.‘.'.
T
"t

to move up into this gap. On the other hand, some dependencies are an artifact of the
architecture. For example, the store iastruction g at time 28 will be executed whenever
> neither of the branches ¢ and f are taken, i.e. whenever b and e are both false. The
~ o values of b and e are actually known at time 13, but the store cannot be issued at that
time because it must wait for the branches to be completed. Early execution of store
instruction g is critical since the relatively slow load instruction A is dependent on g.
This dependency arises because the values of x and y are defined external to this deci-
sion tree and hence in general the compiler cannot determine whether x = y. Therefore
to guarantee correctness the compiler cannot allow A to be executed before g. Note
that instructions g and A can be issued in consecutive clock cycles if and only if g and
h are not dependent and if they reference different memory banks. Otherwise a
memory bank conflict occurs at time 29 and the issue of instruction A is delayed by

hardware until the conflict is resolved.

One way to avoid delaying a store instruction while waiting for branches to be

‘- resclved is to provide a guard expression[15] on the store instruction. A guard expres-
::; R sion is a boolean valued expression. Whenever a guard expression evaluates to false, it
inhibits writing of the final result, thereby converting the instruction being guarded

into a no-operation. We represent a guarded store instruction by
~ <store instruction > ? <guard expression >
where <guard expression > is a function of boolean results generated by previously

executed comparison instructions. For example, the store instruction g cculd be

f" changed to the guarded store

5 g:B(x) ~ 37 285

AR AR SR DA ge g B Nt A A A A

© rh .
5% S

o1t e
.

T e,

14 e
5
The guarded store, g, can now be moved into the delayed part of branch ¢ at time 13, - 7
foliowed by instruction & at time 14. Similarly, jump and gofo instructions can be
guarded and moved up. Conditional branches can be converted to guarded jumps, and ':L.:
other variables can be added to the guard expression. Note that loads, comparisons, and -';: B'
computation instructions need not be guarded, provided that a sufficient number of
registers exists. o ;:'\
) By making use of guarded stores and guarded jumps, the decision tree shown in 2
; figure 2.4 can be further improved to yield the schedule shown in figure 2.5. Note that
g once the delayed part of a branch has been completed, subsequent guard expressions : ;
* need not test the value that determined the outcome of that branch. For example,
:EL instruction o is executed if e&b is true. However, since the delayed part of branch ¢ is
completed at time 19, the compiler uses the fact that if control flows to instruction o, ‘3 L
then b =0 so there is no need to include the 5 term in the guard expression for instruc-
tion o. Similarly, b=1 is known if control flows to instructions ¢ and v. Since the
delayed part of branch f is completed at time 22, no later instructions need use ¢ in :3 L
their guard expressions. |
The operation of the pipeline for the time interval 19 to 30 is shown in figure 2.6. .
In this figure, instructions flow through the pipeline from top to bottom. Lower case - i_
letters represent instructions from figure 2.5. Upper case letters with subscripts, such
as X, . represent the k** instruction after the label X of a goto instruction. A blank
entry is used to indicate a ¢ instruction. [.
Figure 2.6(a) shows the pipeline operation when path 3 of the decision tree is
taken. Referring to pipeline segment 8, primed instructions, such as ¢, indicate a guard
expression that evaluates to false. Each of these instructions is converted into no- = 'r—
operation by the hardware. Instructions in parenthesis, such as (k), are fully executed, : "
T TR e e e e e

-
)
005
15 850

5ex
$h

0 a+~A®K) e,:r

1 d+~Aly) !

2 g ~B()

3 ¢

8§ bea<xi

9 e+~d <2

10 r ~¢g <8

11 ¢

12 c:jump? b

13 g:B(x)+~37? 285

14 h « B(y)

15 f:jump? e&d ————
16 s:jump? r&b
17 p:goto X ? e&d
18 u:gotoY ? r&b
19 w:gotoZ ? r&b

20 0:C(x)+~77¢ t:C(x)~9?r
21 ¢ v:Cy) =102 r
2 i~h <4 é
23 ¢ ¢ ¢
24 ¢ ¢ ¢ ¢
25 ¢ —done — ¢ ¢
26 j:ijump?i —done — ¢
27 l:gotoV 2 7 —done —
28 nigotoW ? i _
29 k:Cx)e-527 =
30 m:Cly) =62
31 ¢ N
4 ¢ % e
35 —done- ¢ RO
36 —done — ‘
Figure 2.5. Improved schedule using guarded store and jump instructions. '.'::..’_.L
)
but are of no use to this path. Note that instructions g*. (i), and 0 on path 3 complete -
early because they are four-cycle instructions. :E::'.:_:
Figure 2.6(b) shows the pipeline operation when path 5 is taken. Note that ;'-::;::
although the same set of instructions as for path 3 are completed at segment 8 between .
times 19 and 26, their guard expression values are different and hence a different set of -:
i
vy

1 w o0 i Xo X, X2 X3 X, X

2 u w] i o X1 X; X; X, -

3 V4 u w o i X 0 X 1 X 2 X 3)
4 s p u w o G) Xo X X, sy

5 f L) 4 u w X o X 1 v <
6 R f s p u w X, *
7 A f s p u w T
8 c’ (h) f s' p u' w' I
(2) path 3 (6 =0, e =1) ¢
: &, "
. ._.\‘j
PIPELINE TIME ::-. }:1
SEGMENT | 19 20 21 22 23 24 25 26 27 28 29 30 ;::.\:1‘
1 w ¢t v Zy 2, 2Z, 2,) ':‘::.‘J
2 u w t v Z, 2, 2Z, e "-i‘..l:‘
3 P u w t v Z, 2, E e
4 s p u w t' v Z,
5 f s P u w o
6 A f s p u w NN
7 h f s p u w S
8 c (R) f' s p' u w Py
o -
(b) path 5 (b =1, r =1) sclibocs
O
-. - ‘.
Figure 2.6. Pipeline operation showing overlapped guarded jumps. o :‘_.E}
RN
~ b
these instructions is converted to no-operations. Once time 23 is reached instructions Tl
exiting the pipeline on the two paths are distinct, since the outcome of branch ¢ differs t: _::Q
at time 19, resulting in different instructions being initiated at time 20 and these < i_:
instructions appear at segment 4 at time 23. j%(
From figure 2.5 it is clear that the delayed parts of branches are utilized much o

.
[}
.
.'

more efficiently. The expected execution time and speedups using guarded instructions,

¢

o

»

c“/ "V
"4’: R

assuming equal probability paths, are

/,

»
’
v

.,
LA g
L.

.,,
£y
-

]
e B

----------- ‘-..--...............-_-_-_-..:_-‘.‘._........... ORI TR N S}
L e LTI e D R e e

v '\1. TN . . ~ R IASA AN DA A P R L N L S DRETEAIN
‘ .'f.m-ﬂ' " :f‘Q-(L‘*L'.JC:(:'-'--' PO AR A A I PSR PR R S A A AP S S A W RSN S D I PRIV

S GERILE R G E AR VAN AR AR VRPN S0, £ N DA AL IOl KL e a0 B b Guk i g Sl S
Vv, s

| 20

,lj_)l

]
e

17

.

El Touarp] = 0.2 (35 + 36 + 25 + 26 + 27) = 29.8 (4x clock)

AE(Tose]l 504

f: SPgyagp: p1sc = o] =308 - 1.691
_I_E SPguarp: rrrz = -E?;G%T = -“W;— =1.490 5:?3
- i
Although the achieved speedup of 1.691 relative to a 1X pipeline is still much less than *1'-
the theoretical 4X speedup, it is relatively near the data flow limit, as shown by the : \1
- performance ratio ::E*:
: A
- Peirorars) _ AEl LBpsc] _ 26.4 Sh
. Pooe | Bl B8 " s

Recall that this performance ratio for a 4X pipeline without guarded instructions is

D

ShHh

PR

AL

only 59%.

v ¥
3
[

The amount of hardware required to evaluate guard expressions depends on the

. M)
. AR
. R

'E: ¥ complexity of the expressions. We have found that expressions consisting of the AND :;":
L) of true and complemented values of a few register bits is adequate for supporting fast ::;
. E scalar processing. Thus very fast guard expression evaluation can be implemented inex- i ‘ .
y e
' To exploit the guarded store and guarded jump instructions discussed above, it is :‘1‘;
@ necessary to perform extensive code rearrangement. Constraints on code rearrangement -

| arise from data dependencies between instructions, hence it is critical that artificial

: dependencies are eliminated whenever possible. An important class of artificial depen-
dencies arise due to register reuse. In the following example, no parallelism can be }:_;:::

exploited in the code sequence on the left because the instructions forms a dependency 'k:

chain. EC." 3

n
s Y

ek .
» tee LS A
- e

+

L)

.

o
-

u. p «
et
. . LR
. PR
.-' y . '-

A B
Y

v,
PR T

TN A A FE NI LY LRI O R VI VN TR WE TR T W T VW L Fig S a £ TET R N \E e R A Uy TS o AR R NN AP D Lt B N AT NS o NN R S, e B Mg Sast S AN o)< SR e g

SO

£
§

18
E
a~x+y ar~x+y
bea+z bea+z i
a+~u+v a'~u +v =
c*™a+w c+=a'+w o~
The code sequence on the right, however, forms two independent dependency chains and g

thus execution of one chain can be overlapped with the other. The improvement in

parallelism was achieved by renaming the second assignment of register a so as to avoid ‘

reuse. The technique of register renaming to eliminate unnecessary dependencies is well

e,
known[16]). When applied to a tree of basic blocks, every temporary register can be &
 renamed 50 15 to be assigned exactly once, the so called single assignment property. ‘ﬁ
The use of single assignment temporaries gives the compiler maximum flexibility -
in reordering code within a decision tree so as to utilize concurrent resources efficiently. & F\:':j

f' o

Y.

1 4 All

All code shown in the examples has this single assignment property. Note that in actu-

'j

ality some register reuse can be accommodated without performance degradation. Once BEAC
-

a code sequence has been generated. a second pass can be made over the generated code f.ﬁ- :(:;2?
N

to locate disjoint uses of registers and map them into the same physical register. No N ':j

.
L
.

Y

performance is lost by this mapping and register requirements are reduced.

P

i}

N

)
e o

Architectural support for register renaming to increase parallelism simply

e,
AP A
[N

¢

involves providing a sufficiently large number of registers. Extensive code rearrange-

ment, however, poses a more serious problem. When code is moved from after a branch W

’
2

to before the branch, some instructions from the conditionally taken and fall-through

€4
.

Py’

paths of the branch become unconditionally executed. In this case a spurious exception v
condition can occur in the rearranged code due to the execution of an instruction that

would not have been executed in a serial machine.

One possible solution is to encode the exception condition within the result regis- H E;
ter{17], possibly by extending the length of the register. Exception conditions are pro- (
pagated through subsequent computations, but the actual signaling of exception e

P s

|
(g

-

s
s

&

('.;‘n

s
'. .
N

u.t"

~ -
.

I

19

conditions is deferred until an attempt is made to store the content of a register contain-
ing an exception code. With rearrangement. the set of store instructions not inhibited
by guard expressions are exactly the same as the set of stores produced by a serial exe-
cution of the program without rearrangement. Thus the signalled exceptions are the
same. The same encoding technique ag for arithmetic exceptions such as divide by zero
can be used for illegal memory references so as to allow actions like prefetching past the
end of an array. However this technique cannot easily be extended to page fault excep-

tions, since they may eventually have to be serviced.

2.4. The Decision Tree Scheduling Technique

In the previous section we proposed the guarded store and guarded jump architec-
tural features. These architecture features can significantly improve scalar code perfor-
mance. Efficient use of these features, however, requires that the compiler perform
extensive code rearrangement. This section describes a heuristic code generation tech-

nique that performs the necessary code rearrangement.

The main objective of the code generator is to rearrange, i.e. rchedule, the instruc-
tions in a decision tree so as to minimize the expected execution cime through the deci-
sion tree. The technique presented here was used to produce the schedule shown previ-
ously in figure2.5. A convenient representation of the program for the purpose of
instruction scheduling is the dependency graph{16]. Figure 2.7 shows the dependency
graph for the ongoing decision tree example. Instructions are shown as nodes in the
graph, labeled with either the result register name or the explici: instruction label. Arcs
in the graph represent data or control dependencies between instructions. Within each
node. the number on the left hand side of the center row gives the earliest time that the
node can be issued. The number on the right hand side gives tae execution delay of the

node. Note that the delay of jumps in the interior of the tree (¢. f., j. s) have

‘ol

LAY
~
LA

k .

v

A
o5,
4

R
s

e
[N [*
L

'
PSP Y

.
)

'. e "w
PG

%
*

-..'..‘-'V;'- .
RS /l ")

- v
R
1]
s %
o'
2"

s r
? s s
.
3t
PP
Talr Al pte

LA
.

CACI

e

r
’

k)

.

7. '-‘._‘.'. .'-" -'.
* ._‘..3.'.‘. .l..‘;;“ ."'

AL
SRR P N

e L
AU BRI

T
..{A 1 4

!

n LI s e 4 and Lee MG aDaY v L s b - --1114 K .w..
Omhﬂdf\,\ \s- ; % ...w_.l. SOOI A~...\«. Ja. ~‘ .-.\..\-\--Hn-.ﬂ.ﬂ.-\-. -.” 5-.-..-...t--. S NN
LAY LRI -. A ~-..... .. .- ¢ 4, .._q . ..-, L%yl h-.fF\ o, LAPLRR .n. -\..'. atate’e’

S b LSO ¢ - B - SO AR AN’ BTN -+ B - S ¢ OIS s A

A

R
AT
A s,
T e S
PN

b4

Al

[N P

-

- \ l‘-iﬂ‘..-.".'.
VALS A LSRN

S
DMLY
Rt nl ol

N I N

.t
L

A

o -

“ \y‘

CoaTe e
A
Raak b Sl

N
TR)

- _~'-.<. -.‘ !
ekl w

e
e
P

Y

Figure 2.7. Dependency graph representation of decision tree.
W

o
o w

R
Sl ad

S e

e ata

S

s et et wT

....................................
............

.......
.
.......
.......

21

execution delay +1 to allow overlapped jumps while leaf jumps ({.n, p, u, w) have
delay +8 in our model since this tree must be completed before the next tree begins.
The real number at the bottom of the node is the scheduling priority, to be discussed

later.

The problem of finding a minimum delay schedule for a set of dependent tasks is
known to be NP-hard[18]. However, it is well known that list scheduling tech-
niques{19] produce good schedules in practice. We have developed a decision tree
scheduling (DTS) technique based on an extension of list scheduling. A procedure
implementing the DTS technique is shown in figure 2.8. This procedure is initially
invoked with G equal to the entire dependency graph and P equal to the set of all paths
through the decision tree from the root to a leaf node. On the initial call, nothing is

deleted from the graph in step 1 since every node in the graph lies on at léast one pa}.h g

procedure schedule(G, P)
G: Dependency graph representing subprogram to be scheduled
P: Set of paths through subtree to be scheduled jéﬁ.'j-:-
begtn i
1. Delete from G those nodes and arcs not on paths in P L—j

2. Return if G is empty

3. Schedule nodes until potential transfer of control flow

o
e gt

4. schedule(G, {jump taken paths})

T

. . - .
A Pl a0
S et ety .
el A
| LR PR M »
PV | S A

s
PRI AT I

. P P
b R B S S S ST S A

5. schedule(G, {jump not taken paths})

-~

end.

Figure 2.8. Decision tree scheduling procedure.

.
s,

.
«" e n

K
y 22 b ::;:_
> D' . ‘- A
. ! 4
through the tree. Step 3 schedules code in priority order subject to dependency con- * ~
> -,
f "
2 straints. Code scheduling continues until n cycles after the first interior branch has e
. -t
‘ ‘.-I. ..Q.’
g been scheduled, where n is the delay of the branch. At this time two logically indepen- (8!
dent subtasks are created to handle the two possible branch outcomes and “schedule” is E‘:
o
called recursively. i} ';t:_’.:
ao
The first subtask is initiated with a copy of the dependency graph along with the) E .
. - subset of paths through the decision tree that pertains if the jump is taken (step 4). ;t'.:',:'.
. ..{'--
Similarly. the second subtask is initiated with a copy of the dependency graph and the o
- subset of paths that pertain if the jump is not taken (step 5). E;. r'
o
Each subtask schedules code until n cycles after the next interior jump that
belongs to its own subset of paths. Note that this jump may have been scheduled by
the pa;'ent task in the delayed part of some earlier jump. Referring to figure 2.5. the E
subtask handling the code sequence for paths {4, 5} beginning with instruction ¢ finds 5 :;:;2
previously scheduled jump s to belong to paths {4, 5} but not jump f . since f belongs e
to paths {1, 2, 3}. Therefore the subtask for {4, 5} would stop code scheduling at time 8
= x, +n =16 + 8 =24, where x, is the issue time of instruction s. and recursively D
p e
- divide into two subtasks to complete paths {4} and {5} independently. Note that exte- o]
T
rior jumps (goto 's) do not terminate code scheduling in a task. The recursive division . E 3
continues to the leaves of the decision tree. Application of this code scheduling pro- j
1
cedure to the dependency graph shown in figure 2.7 was used to produce the code shown i
in figure 2.5. A !‘* =
The quality of code generated by the DTS technique is dependent on the heuristic ,:'.:_::'.:4
used to compute the node priorities. Intuitively. the node priorities should satisfy the .
following properties: B E—j
7N
. .Y
e
AN

\.:’

.

—

-

= L
g

-

.

b“"

.c.‘ .
R
o

e

SN S
.!

23

(1) A node on a high probability path through the decision tree should be given higher
priority than a node on a low probability path. Since a node can be on multiple

paths. the priority of a node should depend on the sum of the path probabilities.

(2) On a given path, a node near the top of the critical path through the dependency
graph should be given higher priority than a node near the bottom of the critical
path. Also, a node not on the critical path should be given lower priority than a

node on the critical path{20].

Property two can be quantified as follows: Focus on a single path i through the decision
tree. Calculate, for each node on that path, the earliest execution time based on data
dependencies. Define the path length [; to be the earliest completion time of the termi-
nal goto instruction of path i. Sweep backward through the graph and calculate, for
each node j. the latest time (latest;) that each node must be issued in order for the
path to be completed within the minimum time [;. Nodes on which the terminal goto
instruction does not depend have latest issue time of {; minus the execution time of that

node. Define the urgency of a node j on pathi through the decision tree to be

latest,

Ly, =1~ T
3

Figures 2.9, and 2.10 show the earliest issue time, the latest issue time, and the urgency
fo: each node on each path through the decision tree.
Combining the urgency metric with property one gives the heuristic priority func-

tion. For each node j, the list scheduling priority w, is given by

M
w, = ZP&"!.;
im]

wkere M is the number of paths through the decision tree and p; is the probability cf

taking path i. Application of this heuristic function to the urgency values shown in

ARSI]

P PA

o " ey -
% APIIA

path 2

2

T
} -yt

NaLh

CeT T s THERYW - -

Te T T KW A, 0,

T

A T WAl s S

............

ERNRVESS BB F'a Fta B Bh SAan i Wb M0 ¢80 2t ok, 't Ae & And Sl Rl Pyl

Figure 2.10. Heuristic computation for paths 3, 4, and 5.

.......................................
..

26

figures 2.9 and 2.10, where each p; is assumed to be 0.2 in this example, was used to
provide the priority values shown in figure 2.7.

A significant advantage of the DTS technique is the sensitivity of the heuristic to

the values of the path probabilities. For example, if instead of being equal, the path

probabilities were (1/8, 1/8, 1/8, 1/2, 1/8), then the new node priorities would be as
shown in table 2.1. Based on these new priority values, the DTS technique would pro- - E ;:J
duce the new schedule shown in figure 2.11. Note that path 4 (the high probability 3 ’
path) has been shortened from 26 to 22 cycles at the expense of increasing the length of j'.ﬁ'::'.j'
paths 1, 2, and 3. Table 2.2 shows the expected execution time and speedup relative to = {:‘;
the RISC-1 processor for each of the schedules under the asymmetric path probability e
- ~
assumption. The RESCHED column uses the schedule in figure 2.11 and reflects the A j:l:;-::
advantage of rescheduling when path probabilities change. E; 'E_':":
]
-)
Table 2.1. Node priorities for path probabilities (1/8. 1/8, 1/8, 1/2, 1/8). T

[a b c d ¢ f g h '
| 1.000 0666 0412 0375 0269 0.127 0.162 0.155

1 j k { m n 0 P }
0.082 0.066 0.000 0.029 0.000 0.029 0.006 0.048 A
q g s t u v w - E_“:
0.597 0.369 0.256 0.023 0.182 0.006 0.046 R
1
N
S
. . A
Table 2.2. Expected execution time and speedup for asymmetric probabilities.] >
| RISC _PIPE__ GUARD _RESCHED S
E[T] | 49.500 41250 28375 27.000 A
SP. r1sc 1.200 1.744 1.833 S
E F
SR
N

............................
....................................
.........................

..

’
v v -

AN
#

o
b2

.

27

*

E ol

I
.

i
oo

At

< N
™ 0 a ~ Ax) e
. 1 q +~ B((x)) '-’{q
: 2 d ~ Ay
" 3 ¢ E'1
8 b+~as1
9 re—qg <38 AR
10 e—d 2 e
11 ¢ l
12 c:jump? b T
13 5:jump ? r&b e
14 u:gotoY ? r&b PR
. 15 g:B(x)~3? z&b L
e 16 h ~ B(y) f';.;{
b 17 f :jump ? e&b L
18 p:goto X ? e&bh T
19 w:gotoZ ? r&b .;}.'_:1
20 0:C(x)+~7?e t:C(x) =92 r]
21 ¢ ¢ v:Cy)~10? r n
L 22] —done —] lli;--i
N R : o
24 ie~h <4 é N
5 25 ¢ ¢ ¢ L
e 26 ¢ ~done — ¢
v 27 ¢ —done —
28 jijump? i
rC 29 l:gowV 2?27
30 n:gotoW ? i
k)1 E:C(x)~527
32 m:Ay)=62i
33 ¢
g 36 ¢ ¢
- 37 —done —]
33 —done —
Figure 2.11. Execution schedule for path probabilities (1/8, 1/8, 1/8, 1/2, 1/8).
The sensitivity of the proposed heuristic to the actual path probability can be
t“ viewed as a refinement of the trace scheduling technique{21], which generally does not

distinguish between relatively equal path

..........................

probabilities verses highly biased probabili-

T

i

28 |

=zt

ties. Alternatively, the DTS technique can be viewed as an extension of the IF-tree - “"'

technique proposed by Davis{22]. An IF-tree is a binary decision tree transformed to \

use a large multiway branch. Since a multiway branch cannot be executed until all - ‘__'g

dependent conditions have been evaluated. exits from the decision tree cannot be made) E .
until the last condition has been evaluated. In contrast the DTS technique takes advan-

tage of early exits out of the decision tree whenever possible. E .

The DTS technique can be extended to architectures that employ parallel instruc- = '

tion pipelines and a horizontal microcode-like instruction format so as to permit issuing

multiple instructions per clock cycle. For example, instead of increasing the RISC-1 u L

clock speed by a factor of four and hence multiplying the pipeline length by four as
shown in figure 2.5, the same level of concurrency can be achieved by multiplying the

pipeline length by two and then duplicating the pipeline. Using the same node priorities ; [-

as shown in figure 2.7, the new schedule with up to two instructions issued per cycle is o
shown figure 2.12. In this figure the instructions are shown by their label and guard

expression. The top of each box represents the branch target line used in previous

N &
s

figures. When the compiler generates two guarded jumps in the same clock cycle, they
must be mutually exclusive so the hardware implementation remains simple. Assum-
ing equal path probabilities, the expected execution time, speedup, and performance - ‘

ratio are

E(Tpap-2]=02(17+ 18+ 124+ 13 + 13) = 14.6 (2X clock)

2E[Tarsc] _ 252 P

SP -2 = = = =1726 .

MR = P Tyl 146 L

Petrpund _ 2Bl LBusc] _ 132 _ g0 o
S r

This schedule with a 2X clock achieves a speedup slightly better than the 1.691 speedup

obtained by the single pipeline with a 4X clock.

..
.....................

e T T S T S T T TN T e R T T S T . T T O Y A Y T R T R T A T T T N I MY AN IV N R OV CF VIV NI VO ENERT PR Y S Y TN Y AATrS

2

S
"} ‘,"‘
b f':' 29
'.‘ v
‘.: N 0 a d
' IR
J 3 3 IS
T 4 b e
. 5 r ¢
. 6| c?b g ? &b
. 7 h f ? e&b
8| p?2ethb s?r&b
9| (u?r&b w?réh
10 o?e ¢ t?r v?r
1 i ¢ ¢ ¢ ¢ ¢
- 12 ¢ ¢ —done— | ¢ ¢ ¢ ¢
- 13 j?i L?27 —done — —done —
14| k?7 n?i
15 m?i ")
16 ¢ ¢
. 17 —~done — ¢ ¢
. 18 —done —
= Figure 2.12. Execution schedule for two instructions per cycle.
. : Another configuration with the same concurrency is 4 RISC-1 pipelines using a 1X
D clock. The schedule for this configuration is shown in figure 2.13. In this figure the
. - guard expressions have been omitted to save space. Again assuming equal path proba-
© bilities, the expected execution time, speedup, and performance ratio are
- El Tpap—]=02(9+9+6+6+6)=72 (1x clock)
: ElTase]l _ 126
. sp’M—‘:RIx = E‘TP_RIA& = 7:2— = 1.750
Potrpsn-d _ E[LBpsc)l 66
P BTmed 7200

The ability of the DTS heuristic to utilize both pipelining and parallelism efficiently

- :-,': significantly increases the flexibility of the machine organization and allows the machine

Ola d q ¢

1(¢ ¢ ¢ ¢

21| b e r ¢

3|le f g =

41hA p u w

S| ¢ ¢ o ¢ o ¢ |t PP |v ¢o9
6| i ¢ o o done done done
717 & 1 n

8im o o ¢

9 done done

Figure 2.13. Execution schedule for four instructions per cycle.

designer to trade off pipelining with parallelism for greater cost-effectiveness.

2.5. Performance Evaluation

We have constructed a compiler to evaluate the performance of the DTS technique
and the guarded store and jump architectural features. This compiler accepts a subset
of the language C. ‘

The performance evaluation is based on a pipelined uniprocessor model derived
from the scalar portion of the Cray-1. This baseline uniprocessor has instruction execu-
tion timing characteristics of the Cray-1 computer{23, 24] with branches taking a con-
stant 14 cycles. The Cray-1 branch time is actually 2, 5, or 14 clocks for the cases that
the branch is not taken, taken with branch target in instruction buffer, or taken with
branch target in main memory, respectively. The constant 14 clock assumption
simplifies the baseline uniprocessor, but. makes its performance somewhat lower than
the performance of the actual Cray-1 on scalar code.

In this section performance is speedup relative to this baseline uniprocessor. The

target machine model consists of one or more pipelined processing elements. The

e
e
T,
.
»

1735
’

—y %y

o0
AN

ce t e
v,
et e

!
Py 2

s

¥
b

B2y

......,
RAPL AP
vl e ey

S

'
EA] v -
S P e

ey
. .
AP
»

7y
XA
.

AV

'
LRV B AR

v

Pt
[}
’

- . 90 9
SO D

e M TN TSR

<
v
N 31
._ processing elements are controlled by a horizontal instruction word with an instruction _~ <
_\":*.
field for each processing element. The timing characteristics of the processiig element .t}:j
-« '$f o
are the same as that of the baseline uniprocessor. ?Eﬁ
In addition to the normal operation of code generation, our compiler also performs (A
selective code replication. Use of replication was motivated by the observation that 5
P
pipeline utilization improves with larger decision trees. Natural decision trees in most s
Al
programs tend to be very small because every basic block that has more than one prede- L"’
tessor blocks becomes the root of a distinct decision tree. For example, the program ,-.
WY
i [N
é fragment shown in figure 2.14(a) produces three decision trees. The first tree contains far
blocks ¢4, §;. and S, the second tree contains blocks ¢5. S;. and S, and the third tree E:
= contains the block S, R
i By replicating the second if-statement and statement S¢. a singl;a much larger deci- r.&
sion tree can be produced as shown in figure 2.14(b). This tree consists of the 7 blocks G’_::::Z;-
N
e Y R
if (¢, if (e, N
I K Sy Sy -
o else if (e2) { i
_ S 2 S 3 S 6 -
. if (c3) } else {
S SeSe
else } else {
£ S Sa
) S 60 if (C 2) {
33 S¢
} else {
N SeSe
. }
2 (@) ()

Figure 2.14. Use of code replication to produce larger decision trees.

.
e v
R
',
« %
s
=1
O

......

........

¥X .E ..r._T‘._T‘."..,'.. .'..

'r\vvv’v-
v T

A oal N i “Eoe AR Se DANCE be "3 S Rt Sl piy B ie PAn Bt Lra A G j au g S i DAL RS ot DAl S

32

c1.(81.¢2). (53.5¢). (S4 S¢). (S3.¢2). (S3.S¢). and (S, S¢).

In our compiler, code replication is controlled by a parameter €. As long as a path
of a decision tree has probability greater than €, an attempt is made to replicate code
further along that path until conditional branches cause the path probability to fall
below €. This technique of weighted code replication is advantageous in that high pro-
bability subtrees of a decision tree are made deeper and larger by code replication while

low probability subtrees are kept small.

Table 2.3 shows the achieved performance for a binary search program with the
list to be searched represented as a balanced linked binary tree with integer keys. In
this table, p is the number of processing elements, i.e. the number of instructions that
can be issued in parallel each clock cycle, and € is the level of code replication. Each

successive column represents code replication past one more conditional branch.

Table 2.3 shows that relatively good speedup of 2.392 can be achieved by the DTS
technique with guarded operations on a uniprocessor (p =1) and no code replication
(e=1.0). Additional speedup can be achieved either by code replication (going right) or
by increasirig the level of parallelism in the machine (going down). Greater speedup can

be achieved by combining both code replication and increased parallelism.

Table 2.3. Performance of linked binary tree search.

€
1.0 0.5 025 0.125 0.062 0.031
2.392 3.116 3477 3.695 3.782 3.895
2.739 3.651 4.107 4409 4587 4.781
2.831 3.881 4409 4.707 4953 S5.137
2.831 4042 4567 4911 5174 5.366
2.831 4141 4896 5.388 5.733 5.989

8 L]y

.“ .'!

s
.
"
-
"
RNy
N

-
<7

RS
. . ,
L

A
t-e

B 2t
s
[l
(A '-. '-.._.
of al el a

LAY
s
O g

el

T,
oo

PRI
P
S I)
LU

hen VOO
j'

i et e e
~' e ‘ o e
)
B . L
e AN 0. LI
. L P
PR T I .
[l .) [R

,, ...
STeTa e

LA o

. AR

I IR
PR et 4t W
o [AP

~ v
a
I

LS

LR PR
)
oo
, .
PRiTRE '
AN

RO DAL DA A M R 2% B M Ly) S n Ak o iy - B au-ute Splnioh ta IeACR g A M A g M SR Il ue RS LA S A i S St S S b A S S50) A

:-’.
-
N 33
! Table 2.4 shows the achieved performance for a quicksort algorithm. Although
- this algorithm is much more complex than the linked binary tree search example, simi-
lar speedup trends are observed. The initial (p =1, €=1) speedup is much lower, but
L
Table 2.4. Performance of quicksort algorithm. P
. L.
p | 10 05 025 0125 0062 0.031 e
1 | 1.489 2396 2.787 2981 3.021 3.121 e
- 2 11623 2940 3391 3814 3981 4.120 e
- 3 | 1.644 3.119 3.764 4.193 4388 4571 L
- 4 | 1.657 3.176 4.026 4.461 4.683 4.873
o | 1.664 3311 4388 5412 5904 6.204
. Table 2.5. Performance of vmsched.c from the UNIX kernel.
-..~ e
- p 1.0 0.5 0.25 0.125 0.062
1 | 1713 1863 1953 2.049 2.108
t 2 | 2127 2.456 2.626 2.846 2.992
3 12307 2.727 2915 3292 3.489
4 | 2373 2.866 3.089 3538 3.786
oo | 2.431 3.028 3.456 4.177 4.658

Table 2.6. Performance of hydro excerpt from Livermore benchmarks.

€
p 1.0 0997 0992 099 0.98
1] 1313 2358 3.052 3223 3.416
2 | 1406 2.742 4895 5.632 6.468
3 | 1441 2.742 4999 5985 9.021
4 | 1441 2.742 4999 5985 9.212
o | 1441 2.742 5.000 5986 9.217

ORI AP LA S P R R TR E R A Wt et L. ORISR I St S St S T T
0y . " . N M o

G
g e

34

reducing € has even higher relative payoff. Once € is reasonably low, increasing p hasa

much greater effect.

Both of the above examples are very small program fragments. To test the viabil-
ity of our techniques on more difficult examples, we evaluated a number of program
modules from the Berkeley UNIX kernel. Table 2.5 shows the achieved performance
for the virtual memory scheduler from the UNIX kernel. Less speedup was achieved
relative to the previous examples because this program module contains many pro-
cedure calls to externally defined procedures. An external procedure call always ter-
minates a path in the decision tree since code replication cannot proceed without
knowledge of the called procedure. Hence the full power of code replication could not
be applied in this example. Nevertheless, even this example demonstrates that our

approach is capable of delivering significant speedup on branch-intensive scalar code.

We have found that our DTS compilation technique and the guarded store and
jump architectural features are very effective with parallel-pipeline hardware for vec-
torizable code as well as scalar code. Table 2.6 shows the achieved performance for the
first loop from the Lawrence Livermore Loops benchmarks{25]. On a uniprocessor with
the loop unrolled once via code replication (p =1, €=0.997), the result is comparable to
hardware speedup techniques for scalar processors{26]. Using three processing elements
and unrolling the loop four times (p =3, €=0.98), DTS produces a speedup of 9.021 via
a schedule whose average execution time is 2.62 cycles per loop iteration. In contrast,
since the Cray-1 has only a single floating-point multiply pipeline and this example uses
3 multiplications per loop iteration, the maximum Cray-1 performance in vector mode

is no fewer than 3.00 cycles per loop iteration, i.e. a maximum speedup of 7.383 rela-

tive to its scalar mode performance.

e

”
.'v _'l

ew
]

N |

CHAPTER 3

SCHEDULING SIMPLE LOOPS FOR OPTIMAL THROUGHPUT

3.1. Introduction

In a conventional programming environment many programs spend a large frac-
tion of their execution time in looping constructs. Therefore the optimization of pro-
gram loops in order to speed up their execution time is of paramount importance in a
high performance computer system.

Although loops can be viewed as scalar code and scheduled to achieve higher per-
formance using the decision tree scheduling (DTS) technique described in chapter 2, in
general the DTS technique cannot deliver maximum loop performance since the DTS
technique has the restriction that a decision tree complete execution before another deci-
sion tree can begin. This strategy allows distinct trees to be scheduled independently
and was deemed necessary in order to reduce the complexity of the scheduling problem
1o a manageable level. A disadvantage of scheduling trees independently is that perfor-
mance is compromised during the transition from one tree to another. Therefore loop

performance is degraded if tree transitions occur while the loop is being executed.

By using code replication to caus: loop unrolling, the number of tree transitions
can be reduced since multiple iterations of the loop can be executed by a single decision
tree. However tree transitions can never be totally eliminated uniless the loop is com-
pletely unrolled. Complete loop unrulling is rarely feasible since loop iteration limits
are frequently data-dependent and/or ta® number of iterations is so large that complete
unrolling is impractical. Therefore in general some performance degradation is inevit-

able when loops are scheduled using the DTS technique.

ST NN
RN g

ol eget s

>

l.
r
2,

o

‘
r?

1
[}

‘e
2
Rl

.
&
PR

b3

"‘ 'I"' ? l. .". ".’",
AORANPCAS

’
-

E !‘h,
A aL

e e e . I
e Iq P

el te A A
oA T e e ey

D A L L
NN PR L.

Fo AL he TN
A .I'-f'-"v * % e g
O T

LA

"
L)

I e A AN R N T - I Y

36

The structure of general loops involving nested conditional statements and pro-

cedure calls are quite complex, and perhaps in practice it is best to handle them using

the DTS technique in spite of the fact that tree transitions lead to suboptimal perfor- - Y

mance. However, simple loops whose bodies consist solely of assignment statements C‘ “"1
have a very simple and regular structure. This structural regularity can be exploited to <
unroll the loop logically and completely without actually doing so. Thxs is the basis for = __‘

the simple loop scheduling (SLS) technique proposed in this chapter.

o
' _'. A '-p.-vv' R
s '

The DTS technique is a general technique that is applicable to any program con- o= 'l_l‘
struct. The SLS technique, on the other hand, is applicable only to a restricted class of ‘.

loops. The advantage of the SLS technique is that it produces schedules that are

throughput optimal, i.e. optimal performance is maintained as long as the loop continues

to iterate. Suboptimal performance occurs only when the loop starts and when it ter- ﬁ
minates. -

The importance of high-speed loop execution is well known. Since loop speedup
techniques depend on the machine model chosen, we begin this chapter with a brief ::
review of several well-known machine models. Following that, the SLS technique is
developed in several stages, beginning with simple cases. C Ny
3.2, Architectures and Loop Performance = E—r:;

Consider the simple loop written in the language C shown in figure 3.1. This pro-

o
PR
AR
1
Cala ot

L gram fragment is representative of many nonnumeric programs in that simple loops are l;':;;?i
F frequently used to traverse linked data structures. The C notation _!-::‘*:1
! MO
,) oM

while (<assignmenz >) { ...} :-_.:-_?‘

[s

o
14 .I »
2

means perform the <assignment > statement as specified and retain the value that was

DOV R B

assigned. Then if the retained value is nonzero (i.e. if the pointer is valid), initiate

..
..

......

M
A

»

SN S S TR S,

ARY L T B S]

1 W A

1} ¥ | TS

q-vvr..-.
sl e -

AR T PO

.
o
v' N
"
’.
n

AR AN UA, £ AN

37

struct vertex {

struct arc *arc;
int data;

k
struct arc {

struct vertex *node;

int T{ L

struct {
int index ;
int value ;
IR()

register struct vertex *c;
register int i = 0;
register int g :

register int k = 0;

while (¢ = ¢ —arc[1]—node) {

g =Tlc—~data+i];
i =Rlg lindex;
} k +=Rlg l.value ;

/* Graph vertex descriptor. */

/% Other fields in vertex descriptor. */

/% Pointer to list of outbound arc descriptors. */
/% A data field of interest. */

/* Graph arc descriptor. */
/% Other fields in arc descriptor. */
/* Pointer to destination vertex. */

/* A list of indices into the following array. */

/* List of records in an array. */
/% A value used to index into the array T. */
/% An interesting data value. */

/* A cursor moving through the graph. */

/% A corresponding index intc the array T. */
/* A temporary used to index into R. */

/% An accumulator of interesting values. */

/* While more vertices do: */

/#* Calculate an index into R. */

/% Acquire the next corresponding index. */
/* Accumulate another interesting value. */

Figure 3.1. Example of simple loop in source language.

another iteration of the loop body. If the retained value is 2ero, the loop terminates.

Note that the <assignment > statement is reexecuted at the beginning of each iteration

of the loop.

The data structures and operational characteristics of this simple loop are shown

in figure 3.2. The top part of the figure shows a graph data structure. The graph is

traversed by following the second outbound arc from each vertex (array indices begin

with O in the language C). The bottom part of the figure shows a pair of related tables.

e

DY AR 14

I I RPY o

RRPRT AN

‘e
»

.
Y
.
.
-
'
"

38

VERTEX
DESCRIPTOR

OUTBOUND

LIST ARC
ARC DESCRIPTOR

data DESCRIPTOR

node

arc
data

!

()=
value

LIST OF LIST OF
INDICES RECORDS

Figure 3.2. Data structures in simple loop.

During each iteration of the loop, an index into the first array, T, is generated using an
item from the current vertex in the graph. The value retrieved from tabie T is shifted

by the appropriate amount so as to form an offset into the second array. R. The entry

pointed to in R (an index field) is saved in i to be used during the computation of the

. 8

oo
¢ e
LI v

v

L f

CRA TS

.!:\

39

next index into table T. The next entry in R is the value field to be accumulated in the

variable k. The final value of k is assumed to be used eventually outside of the loop.

An assembly level representation of this simple loop is shown in figure 3.3. We
have chosen to use a load/store architecture[1,S5,6.7,8,9] for reasons discussed in
chapter 2. From this low level representation of the program we can derive the depen-
dency graph shown in figure 3.4. Instructions are shown as nodes in the graph, labeled
with either the result register name or the explicit instruction label. Solid arcs
represent data depende.ncis between nodes: downward arcs specify dependencies within
a single iteration of the loop while upward arcs specify dependencies from one iteration
to the next. Dashed arcs represent control dependencies resulting from conditional
branches. The dependency graph is an appropriate representation of a program loop for
the purpose of readily viewing the constraints on code scheduling. In future examples

we shall omit the lengthly process of specifying program fragments and simply use

only dependency graphs.

loop: a « arc(c) Load pointer to arc pointer list.
b =~ 1(a) Load pointer to second arc descriptor.
¢ + node(b) Load pointer to destination of, arc.
d: if (¢ =0) exit Terminate loop if no more vertices.
e +~ data(c) Load data field from vertex descriptor.
f —e +i Use data to offset recirculating index.
g ~T(f) Load index to array of records.
h g <<2 Shift index to form offset.
i «~ R.index(h) Load new value of recirculating index.
j = R.value(h) Load new data value of interest.
ke~k+j Accumulate new data value.
L: goto loop Start another iteration.

Figure 3.3. Assembly level representation of simple loop.

u v % AR A [oy B, 0B R B A,
t-\o.'o-s't»-\ ﬂu\hc\h! a : ﬁ.\ -.. u.- .-~ --\\.. -ul n.f L..-M- y M-ﬁ.-.._-.ﬂ“ ’ -_ -. u- -l— 1\- n-— M
Y R AR LA W 1 SN PUACAATALEL WO U e A
S osdd e D e W ST LN
4
e
.8
4 Aan
¢ S
4 ‘s
L B
' - - .~....
] .
Y
1
. a. 4
— 0
1 e . n-
-— .
f = o
.. \N
i ; Y
1 OOI ..-
] [.‘...
. £ te
3 [.
. m .
, w ... o
) b "
L] L] 0
: g 5
F: .
\ g
. , e
’ .
e m .l
1 7’ . Y
s [
. ’ Y ",
N
(]
.w
bxe

p A
,

) , .

I 't

rd o
. I'd .
2 e
. s .
9 7

/7
‘ 4
4

‘ s
- 4
) d
.
.
'
.
2
.
.
‘
IEYIERARES RS YIY AN RO LA DAV KR! § DAL o

41 '5;3;;5

Such a loop. executed on a wide variety of architectures, will achieve varying lev-
els of performance. In this section we compare the advantages and disadvantages of

N several architectures for this kind of loop.

3.2.1. Scalar Architectures

Consider a pipelined scalar architecture such as the RISC-1 microprocessor{6].
This microprocessor issues one instruction per cycle, and performs a load or delayed
branch instruction in two cycles and all other instructions in one cycle. Figure 3.5
shows a table of instruction issue times for one iteration of the loop. Entries in the
- “INSTRUCTION ISSUED" column contains either the instruction being issued. or ¢ if a

data dependency prevents the next instruction from being issued in that clock period.

. TIME | INSTRUCTION ISSUED
0 [a «arcc)
1 |¢
2 b ~1(a)
3 _|¢
K 4| c ~ node(d)
5 1o
6 d: if (c =0) exit
7 e « data(c)
” 8 | ¢
t. 9 f —e +i E__j
10 | g «T(f) B
11 | L: goto loop R
12 h—g <2
13 | j «~ Rvalue(h) R
14 | i ~Rindex(h) L1
; 15 [k~k+j

Figure 3.5. Scalar processor schedule for one iteration of the loop.

. ‘s, 9
T r LA I
% O MR IR

e,

DRI v e e she are oy Shol NLIAG DUL WL AT 3o a0, 1A ai L ML UL AHE aal LGN g gl anang e art e A AN AR SR SR

]
N

T

LA g

42

Note that the schedule shown in figure 3.5 has been optimized to take maximum advan-
tage of instruction overlap. To facilitate instruction overlap further, we have assumed
that delayed branches can be delayed by greater than two cycles if desired. This allows
branch instruction ! to be issued at time 11, which otherwise would have been a ¢
cycle. An unshown parameter within the branch instruction increases the delay and

causes the next iteration to begin at time 16.

As figure 3.5 shows, each iteration of the loop takes 16 clock cycles. Therefore the

time for a scalar RISC-1 microprocessor to complete n iterations is
Tscarar = 16n

We shall use this time as the basis for comparison with other architectures.

3.2.2. Vector Architectures

Higher levels of performance can be achieved by increasing the level of con-
currency beyond that offered by a scalar processor. Suppose that the RISC-1 micropro-
cessor is augmented Wwith vector capabilities similar to those of the Cray-1{1]. In order
to use vector instructions, a loop must be distributed into a set of simpler loops such
that ezch new loop corresponds to exactly one vector instruction{16]. This transforma-
tion is shown in figure 3.6. In this example we optimistically assume that some
unspecified hardware is available for loop control, hence we ignore the if and goto
instructions. Only loops 2, 4, and possibly 5 can be vectorized since the other loops
each contain more than one instruction. The reason loops 1 and 3 cannot be distributed
further is that the statements within them form recurrences{27]. It is well known that
recurrences involving pointers through memory or indirect references through arrays
such as those in loops 1 and 3 cannot be vectorized and must be executed serially. Loop

5 is also a recurrence, but it is a special case in that it is a vector reduction operation

A T P T T T T S S}

L R A, [. N B R e TP R R L R I
SRR S IR NI NI P URAEIAL I I SIS LI P RS W W P UGN SRR T T T - e

l [
P .

- ..' REARAY
.‘ » " .'

-~ NN

0
.

v
. 8

{
.
/|

. .{}

"y

R
2 SR

N
-
o)

.
v .

'

) A N e
Y

. '

" .‘l
)
&

'kf vf ‘!
i o

,
1
s

.
s 4y

(]
L |

4
3
A

'l

'
v

i
Jl;",l
rl ’

[

’ e, - ", -
S P v v

Ay
I IV

(L J v,"", LTt

tr

T T T TR T T

~

[-*.‘ N N TN T
e - e P . S

PR B S Al B Y i A S 2 St B N AR g At M e i i a3 o ha~ e

43

loop 1:

ignored :
loop 2:

loop 3:

loop 4:
loop 3:

ignored .

ap ™ I.l‘C(C,,.—l)
bp = 1(a,)

cm *~ node(d,)
d: if (¢, =0) exit
e, — data(c,)
fm hall + im—l
Em "'T(fm)

Ay ~gm <<2
im * R.index(h,)
Jm * R.value (h,,.)
km - km—l + jm

L: goto loop

Load pointer to arc pointer list.

Load pointer to second arc descriptor.
Load pointer to destination of arc.
Terminate loop if no more vertices.
Load data field from vertex descriptor.
Use data to offset recirculating index.
Load index to array of records.

Shift index to form offset.

Load new value of recirculating index.
Load new data value of interest.
Accumulate new data value.

Start another iteration.

Figure 3.6. Example of vectorization by loop distribution.

involving an associative operator. On some vector machines special hardware is avail-

able to evaluate such recurrences quickly with a single vector instruction{28]. ,.;
From figure 3.6 we can derive the best case execution tuming for a vector processor]

with memory access delay of two cycles and arithmetic computation delay of one cycle. ::]
Namely, we assume that the vector processor has a sufficient number of processing ele- Ej
ments or pipelines so that resource contention is not an issue. However, we do assume :Ei:: ;
that there is only a single scalar processor with an instruction issue rate of one instruc- :Li
tion per clock cycle, since that is usually the case for vector architectures. Loops 1 and L._i
3 must be executed on the scalar processor. Loop 1 contains a chain of three loads so its N
execution time is 6n cycles. Loop 3 contains a chain of two loads and two ALU opera- 1
tions so its execution time is also 6a cycles. Loops 2 ind 4 each contain one load E-i
J

instruction and so can be vectorized. Since all n iterations of a vectorizable loop can,

.

44

with sufficient resources, be performed in parallel, loops 2 and 4 take 2 cycles each. We
shall be very optimistic and assume that loop 5 can be treated as if it was a pure vector
instruction and charge only 1 clock for its execution. Taken together we find that the

best execution time on a vector processor is
Tmon =6n +2+6n +2+1=12n +5
The speedup relative to the scalar processor is given by

Tscarar 16n
SPvrcror = —— = 13273

For a large number of iterations the speedup approaches
SPypcrop = 1.333

Note that this speedup is very optimistic and does not take into account overhead for

loop control.

In spite of the fact that vector architectures offer much more concurrency, the
achieved performance is rather poor for this example. The reason is that only a small
fraction of the loop is vectorizable due to the extensive number of recurrences and
hence most of the execution must be performed in scalar mode. Almost all linked data
structures cause recurrences through memory. The use of linked data structures is per-
vasive in nonnumeric programs as well as certain numerical programs, such as those
that operate on dynamic sparse matrices. In view of the high cost of providing vector
execution capabilities, the use of a vector architecture is inappropriate for job loads con-

taining significant usage of linked data structures.

3.2.3. Multiprocessor Architectures

A multiprocessor is more flexible than a vector architecture. A schedule showing

issue times for the first three iterations on a multiprocessor consisting of three

av

v
»
o5

LA g a 8 8 e "
1] 2" . .
s, 5 LI AP S 4
A~ el L
T, Cetete L,
FAPLIC B8 LA

v, 7
o
a0 ¥
PN
n‘-"» »

-

45

independent scalar RISC-1 microprocessors is shown in figure 3.7. In this figure the

instructions are represented by either the result register name or the explicit label as

:

ROCESSOR

olvle|alaju|alwiv|=]|o

[y

[
[

[y
[3]

4'e
r

[y
w

(A

]

PLI)

(%Y
&

mletdl]| ~pe [lolo ja)e|0 [o]ole]r l~

i
.l

.
14
A AN

[y
W

[y
-}

-

[
~

[

[y
-]

[y
L)

’
»
.

Rl

«
L
L[]

[
o

wle x|~k e |ate e e |o|ela

~
Py

»N
»

[3
w

A e -
A A - ,
Ll) 4
PR

RN St

[&)
S

a

[
[,

N--\.:-NTQ\-Q.Q atefo lolofe|n

[33
~3

Figure 3.7. Multiprocessor schedule for three iterations of the loop. :

D N R T I e SR D ST SRR « "W e e P I T S Y o L TR
At e et m L N N L AP A AP SRR L AT T A S e S T TP e T L T I AT T T N e LI T
o Lt %" LR TRV T AT T T A T A T AP R A PR ARY e T N e e et e e et T T e A N T et T et e ISR SRR

----- N . . N, o R '\-5 .~ ..' }\‘. -:.'
L) PO o AP PP I S RIS AT T Vi W A ARSI, S A

e ol TR S it et Rt Rali bl el gt S SIS LR A i A I 1

46

shown in figure 3.3. Because recurrences transmit data to future iterations of the loop,
the initiation time of each loop iteration is delayed relative to the previous iteration.
Techniques for calculating the value of this delay and transformation algorithms for
minimizing this delay have been developed(29]. The schedule shown is the best possible
in terms of minimizing the inter-iteration delay, which is six in this example. Provided
there are enough processors to eliminate resource conflicts, the execution time to com-

plete n iterations on a multiprocessor is
T, MULTI = 6n +9

Note that instruction k takes only one time unit to complete execution and that all
instructions are actually completed by the time & is completed. The speedup relative to

a single scalar processor is therefore

Tscarar 16n
SPyyzrr = TMU]J'[= n +9 2.667

Since multiprocessors are more flexible than vector processors, they can be
expected to achieve higher speedup for a wider class of application programs. In this
example a multiprocessor architecture was able to do twice as well as a vector architec-
ture. However in calculating the timing for a multiprocessor we have ignored the com-~
munication and synchronization time between processors and the time lost due to
memory port contention. If a multiprocessor has independent scalar processing units
that operate asynchronously from each other (an asynchronous multiprocessor), then
some amount of interprocessor communication overhead is inevitable. When asynchro-
nous multiprocessors are used to evaluate recurrences, the achieved performance is very
sensitive to interprocessor communication overhead. For example, even a modest inter-
processor communication delay of two clock cycles per iteration would lower the

speedup from 2.667 to 2.

TvervLvLvoYEw LY

..
'-‘

-~
-

P
L' N
St

Ly

a.

L O o

DA
LI 2
LACR A

.
)

...

r .I

R
LI L

e
e e

=ty v v

e P
v

'+ & %N "- N

Y A e s

i
P

’

s N Ea iat SVt RS el ity o ia T Jiie S gl e ath ¥4 V4 iss Yath gth sib olh 2k a' OO RO T R W P Yy 0 weg b

> PSS

* L
.

A AN

:

“eresv
‘e -

gl |
;
o

47

The asynchronous characteristic of multiprocessors is advantageous in that it pro-
vides greater application flexibility and also allows a larger collection of processors to
be coupled together, due to less restrictive clocking requirements. When applied to
recurrences, however, these advantages cannot easily be realized because recurrences
severely restrict the number of processors that can profitably be used. Referring to
figure 3.7, we see that the maximum number of processors that can be used efficiently
on this example is three, since the fourth iteration cannot begin until time 18, whereas
processor 1 is free by time 16. Thus asynchronously coupling large numbers of proces-
sors not only incurs the additional cost of asynchronous interprocessor communication,
but provides no performance gain in many applications. If only few processors can be

used effectively, a small synchronous system is more cost-effective.

3.2.4. Horizontal Architectures

An alternative to the asynchronous multiprocessor architecture is the horizontal
architecture[9, 30, 31]. A horizontal architecture consists of multiple processing ele-
ments controlled by a single instruction issue unit. These architectures use wide
instructions with multiple fields to control each processing element independently in a
manner similar to horizontal microcode. The processing elements may be specialized
pipelined functional units{30, 31] or relatively unspecialized scalar processors{9]. The
main advantage of horizontal architectures is that they are globally synchronized and
extremely tightly coupled. These characteristics allow horizontal architectures to pro-
vide low-overhead high-bandwidth communication between processing elements at rela-
tively low cost. The disadvantage is that relatively fewer processing elements can be
supported by such architectures. This, though, is not a serious handicap for recurrence

intensive workloads which cannot effectively utilize many processors in any case.

. e,
v, "7

.
LA

[

Y,
| 4 .l
AR

48 g

a
Consider a horizontal architecture that consists of a two-segment pipelined &

memory reference unit, 2 one-segment ALU, and a two-segment pipelined delayed jump E-“

unit. This configuration was chosen to be compatible with the RISC-1 microprocessor |

being used as the basis for comparison. The separation of functions is motivated by the _E' W

observation that distinct specialized hardware is needed for each of the pipelines, hence .

parallel execution of these functions is reasonable. 2 ,.Lg;
Figure 3.8 shows the execution schedule for one iteration of the loop on this pro- "M

cessor. In this figure ¢ cycles are shown as blank entries. Note that the time for one

iteration is 15 cycles instead of 16 cycles for the RISC-1 microprocessor. This reduction

arises because the increased concurrency allows instructions d and e to be issued in the

same clock cycle. However, if only this small speedup of 1.067 were attained it would

TIME MEM ALU IMP RO
scgl | sep2 | sepl|sep 1 | cen2 SERse

0 a :{.:::_‘

1 a ey

2 15 o

3 b BN

4 c

5 c

6 e d

7 e d

8 f

L) g

10 g

11 h

12 j

13 H j l

14 i k {

Figure 3.8. Horizontal architecture schedule for one iteration of the loop.

..........................

hardly be worthwhile in view of the higher cost of a horizontal architecture.

High performance is achieved on a horizontal architecture when the execution of
multiple loop iterations is overlapped. The left hand side of figure 3.9 shows one itera-
tion of the schedule for the loop. Several extra delays have been added to the compact
schedule shown in figure 3.8 for reasons that will become apparent. Note that only the
first segment of the MEM and JMP pipelines have been shown since the behavior of the

second segment can be inferred from the first segment.

The right hand side of figure 3.9 shows a composite schedule obtained by overlap-
ping four copies of the left hand side schedule each delayed by seven clocks. This time
delay between iterations is called the initiation interval. The superscript indicates the
iteration number associated with each particular instruction. An initiation interval of
seven clocks is sufficient to satisfy dependencies between iterations. The inter-iteration

dependencies are c™ = a™*L, im — fRH and k™ s k™,

As shown in the figure, beginning with clock 14 the memory pipeline is fully util-
ized and continues to be fully utilized throughout future iterations. Therefore an ini-

tiation interval of 7 is minimum. The execution time on the horizontal architecture is

THORJZONTAI. =7n + 16

Hence the speedup relative to a scalar processor is

SPyopizontar = P r— = 2.286

While this speedup not as high as the asynchronous multiprocessor speedup of 2.667, it
should be noted that communication between processing elements in a horizontal archi-
tecture does not introduce any overhead since interprocessor synchronization is precal-
culated at compile time. The multiprocessor required three memory ports and three

ALUs to achieve a speedup of 2.667 while the horizontal architecture required only one

N
I"

o %

s
»

Tttt e
. S e
Sl @ e et
L l"'} . ‘ '.‘
B RARAF
v " LN
PRSI T PSP

‘Pase

>

I

,.’"'f ‘
h
L]
Cofa s s
WL

[g
.

. 4,
A

LR A 7,

R »

PPN Ve

PR

U A g}
PN

’
P

ot

ORI P R O g . AL R il el LA NN
; (- \- ARy s, n-l -5. l .l.l.ta T fs -. .m. b i \.. .\.-..n .'IH-J ... " e .fw.u-.-.-\n. - S & ‘\.J.-.% b e ! . .\ ..-.\-.\..\”. ‘s -\. .1 >~ L
s J e B 4 AR R, P ORI AT S0 ‘ AR . . e ool age,
5\ s Lﬁ\ et \h.\ E-ﬂf\c.\.\\- [l ’ (-.ul-u»fhnbn {L.P.\.s. PATIEAE N ety Sﬂ.w....n FARATRRANAR] ..._.&r B AT ..-. C .. --q-\. -lﬁ\

Y PP Pl SRS T = S o A |+ I -+ S T T { F A A SO 10~ - B

50

-t N | Ll K.
b~ S|~ N~
5
U - -t N e ~N ﬂ
2 - - N N 4
o
]
2
- - - Ol [|~ |0 |~ | jea la |t [e |t e Jn [wo |lew |0 [~
o Y v o ol e|o vl ool o] ol ™~u|o]a]|lw]wl%]~ m
&
o|l~|a|la]|le|ln]|ole]w]|a]|lol~lalaleln]|v|c]lw]la]loll~lalaleln]v]|~ 3
v v ||l]|l w]~w]Qlaa|aQlalalala o
.1
3
£
8
5
-
g
=
_ g - g 4
.
[<}
D - - m
2 = =
o
0 i
9 © © ® 8o =Y e m N
i .
-t ~ 4 Y
= S R MM RN MM E R E RN B SR R R E
.+
0y
N
A
|
o
"y
..._
...-A,
--'-
4-
e
.»lllh
4
-ccl-
! g \‘\rl-\n--.-.no-l. N "-v,..ﬂln‘-i\-“ . .v.-.‘...... - .w..-.. s e .-. -.v-. -‘s:-.—-.-.-) Chy e ‘.-. ~~~~~~- R . _,. o 3 » e ..-.. KRR .li.l‘n- [N

NG P PN AL N M S AN VLRI e St SN A SR AR e M A (A A A L S AR BRI 2 e e ae
- 51
‘; memory port and one ALU to achieve almost as high a speedup. Therefore the horizon-
S tal architecture can be expected to be less costly than the multiprocessor. Furtbermore,

considering that the asynchronous multiprocessor speedup drops to 2.000 with the

l introduction of even very modest communication delay, the horizontal architecture can E:‘i_'.j
)
be expected to outperform the asynchronous multiprocessor for many job loads. ‘-:.;-:3

‘e

3.2.5. Summary

High performance computer systems need to be efficient both on vectorizable
numerical job loads as well as on other more general job loads. The extensive use of
linked data structures causes many recurrences through memory. These recurrences
cannot be transformed into vector form. hence vector architectures cannot provide sub-

stantial speedup on such job loads. Recurrences also limit the number of processors

i that can be used profitably in a multiprocessor architecture. This, coupled with the fact L—;
:::_ that asynchronous multiprocessors generaily have nonnegligible interprocessor com- :
™ munication overhead, suggests that asynchronous multiprocessors consisting of a ~*
: number of conventional scalar processors may not be the most cost-effective architec- E.j
. S
. ture for general job loads. Eijl":j
o The use of horizontal architectures appears to offer improved performance over j
bl vector architectures, and improved cost-effectiveness over asynchronous multiproces- L

sors. High utilization of horizontal multiprocessors can be obtained by code scheduling
50 as to maximize overlap between loop iterutions. In the next sections we develop a

technique for the automatic generation of cp'imal throughput loop schedules for hor-

AR izontal architectures.

e fdTT AR S Y

B o rE RN O

52

3.3. Scheduling Graphs with Acyclic Dependencies

The complexity of finding an optimal throughput schedule for a loop is highly
dependent on the characteristics the dependency graph representing the loop. For pur-
poses of code scheduling it is convenient to classify the nodes in a dependency graph. N,
into subsets

N=Ur UsUaA

k=l

This classification is based on strongly connected components{32]. Strongly connected
components of a directed graph are defined to be maximal sets of nodes such that if
nodes x and y are members of the same strongly connected component, then there is a
directed path from x to y and also a directed path from y to x. Each strongly con-
nected subgraph containing two or more nodes is called a multinode rem. denoted
by the set R, . The total number of such multinode recurrences is m. Other strongly
connected subgraphs contain only one node each and are called self-loops, denoted by
the set S. The remaining nodes are not in any strongly connected components. These
nodes are classified as acyclic, denoted by set A. Note that the node sets

Ry. Ry, ... R, . S and A are all disjoint.

The problem of optimal throughput loop scheduling is to find a valid schedule
with & minimum initiation interval (MII). The simplest case occurs when the depen-
dency graph is acyclic, e.g. the graph contains only acyclic nodes. An optimal schedul-
ing technique for acyclic dependency grapbs has been proposed by Rau(31] for use on

horizontal architectures. In this section we briefly review Rau's results.

3.3.1. The Available Resource Limit Constraint

If a graph contains only acyclic nodes then every iteration of the loop is indepen-

dent of every other iteration. Consider the acyclic dependency graph with nodes N = A

.....................

o et .. [TR A R . . R SR P AP e SR S
A Y L O e e I N AL T e S
st et et N L Lt

Jag LR &

rrr

T

rr”

v,
. ol
'

. e T TR S " . (AR
A PRI RN PN e"e 1 0, O]
v b 0 %0 % Te te e 5 S P2t

R - e 4 . P)
N) ST : St .
v e L e ey LI I A I
ot e e T e N s St . LT

K P LT e e . W “ ¢ .

.
)
.
i

.,
I

1Y

oy

.

A

1]
[A

2

v v oaes
"
s
ALy

L

.‘ ,
RIS i 8
S v
e 'y e
* . .

’

s

P

. e e e
oo %
... . ’

ia AN SN

A R
. o)
. T T .,
s . "',

W N

4 b

A R S N W DA TP D T AR Rt DAL 9 ai s Tk Retiials Mt AL AR T a4k A A S e S LA R R AR A §5o Ay Ma ol e 2isNh R a2 g A %

X 53 k.‘:h" 4

shown in figure 3.10. This graph was derived from figure 3.4 by ignoring the feedback

A2 IR
i
"o 2

;: \C.:'_ arcs, thus removing inter-iteration dependencies. The letters M, A, and J within each E{:
o node specify the pipelined functional unit (MEM, ALU, and JMP, respectively) :
' l required by that node. The number in each node, of the form +s, gives the number of E-
- segments in the functional unit pipeline. "::',::::

Since there are seven memory references needed per iteration, and only one pipe-

lined memory unit is available, successive iterations cannot be initiated less than seven e

clocks apart. In general there is a lower bound on the MI/ based on resource con-

: h‘. straints. This lower bound is called the available resource limit (ARL) and is defined as r:

follows. L
- n R
. ARL (N) = max) §;(c) ' S
. . ceC im) '.~_‘,~;
Where L<
o 1iff, =c -
S 8i(c) = 0 otherwise

Nodes are numbered from 1 to n, indexed by i. The type of functional unit required t: :‘:‘

by a node is given by f;. C denotes the set of all functional unit types. In this exam- _:
':- . “ ~.' J
< ple,C={M, A, J}. -]
~

The available resource limit states that the initiation interval is lower bounded by

L 3 5 el
T the most heavily used resource. Since, for this example, 3 §;(M) =7, Y §,(A) =3, s
. iml i=l e
2 . 1
A and 2.8,(J) = 2, the ARL is 7. This lower bound is not restricted to schedules for acy-

i=t

clic dependency grapbs. In general. a valid schedule for any dependency graph must

. r satisfy the condition ir%

ORI NN N R SR AL AN SR S YA P B AE AN SV S - S T thaf Sl Al A Ak A it

. e e e e - o el el -
ORI R Ny S TP NI IL NN AL SL AL IR N
ST e e KA et ,
P A AR LY S R TR TR R WL YA YA

. '}'«I
. MII(N) 2 ARL(N) ,E_::.::’*"
Ko
e
- where N is the set of all nodes in the graph. N ::":
) . a3l
" Patel[33] has shown that for strictly acyclic dependency graphs. at least one func-)
: - tional unit can always be fully saturated. Therefore s
- MII(A) = ARL(A)
Once the MII has been found. it is relatively easy to construct a valid schedule with
that initiation interval.
Q Before presenting the algorithm for schedule construction, some terminology is
necessary. A schedule for a set of nodes N ={1,..., n} is given by the issue times of RS
each node, denoted by x;, 1<i €n. The initiation interval for a schedule is denoted by ::":‘;':1
» '_\n-_!
. p- The execution delay of a node is equal to the number of segments in the pipelined t
functional unit used by that node. This delay is given by s, ,» Where f, is the func-
tional unit used by nodei.
_' A resource conflict occurs if two nodes require the same functional unit in the
same clock cycle. Note that since successive iterations of a loop are overlapped with an
initiation interval of p. a node from iteration & issuing at time ¢ will conflict with a
. node from iteration £ —1 issuing at time ¢ +p, provided both nodes require the same i .
' functional unit. More generally, the modulo usage function is defined as '
1iffy=cand(x; mod p)=1¢ J
8‘ (c ’ t) = N P
0 otherwise 1
This function is 1 if and only if a node i requires resource ¢ at any of the times : :f:::
N
t.t+p.t+2p, - - For a schedule to be valid (e.g. causes no resource conilicts), the fol- :Q-j.:;a
t” SRR
lowing condition must hold. .r_._l
.'_-»: \
fi‘_ﬁ-
S
-'-'\L1
. ~0
I '
‘ RS
T Sl o sy a Ty e T S T T T ~“.i
et - Salafatialatalatatriatateiatiate Va al

n B
35(c.t) €1 forallc €eC, 0S¢t <p e

i=1

An algorithm for finding an optimal schedule for an acyclic graph is given in W
figure 3.11. Note that nodes in a directed acyclic graph can always be topologically
sorted to get a linear sequence in which every node depends only on nodes preceding it
in the sequence. Without loss of generality we can assume that the set of nodes N is so ’

ordered. An informal description of algorithm A follows: ko

(1) The first node is not dependent on any other node, hence step A4 does nothing.

Step AJ also does nothing since no resource has been reserved for any node. t.. :
Thereforex,; = 0.
(2) Suppose that a partial schedule consisting of nodes 1 through j—1 has already
‘ been found. The earliest issue time for node j can be computed by examining all !:: L
the predecessor nodes that j depends on. given by the set pred (j). This examina- - N

tion is carried out in step A4. Since the nodes are being processed in topological

order, all the predecessors of j must have already been processed and hence their

Al
B o

x; are well defined.

Al. p =~ ARL(N) 2
A2, for j+~1ton do A
R

A3. x; =0 S
A4, for eachi € pred(j) do x; «~ max{=x;,x;+s;, } '.'
)z o

AS. while 3 8,(f,.x; mod p)#0do x, = x; +1
i=l

Figure 3.11, Algorithm A: optimal throughput schedule for acyclic graphs. o) r

L] '-.-

.......................

13 AR B 1S Al ATe Bia iy BAE R B JBia by b G e AE L) 6y S el MG s b Uit e s CR i R e Sang. et st

PELAMIC S Ml WCIMREY An s ol S AR A o ch A g gl B 8 -2 e 4

"

i

BN

57

(3) If issuing node j at the earliest permissible time does not cause a resource conflict

then node j is assigned to that time. Otherwise the starting time of node j is

M2

incremented until there is no conflict. This resolution of resource conflicts is car-

ried out in step AS. Note that because p has been calculated to be just large

‘v
'
ol

enough so as not to overutilize any resource, the while-loop in step A5 terminates

after at most p —1 iterations.

The application of algorithm A to the graph of figure 3.10 yields the schedule shown in

figure 3.12.

- Because every iteration of the loop is identically scheduled, A complete characteri-
zation of the steady state behavior of the loop can be obtained by looking at p consecu-
tive clock cycles. One can simply divide a schedule into sections each p clock cycles

. long, label successive sections with successively decremented iteration superscripts. and
overlay them on top of one another. This overlaid representation is called a modulo
reservation table (MRT). Figure 3.13 shows the MRT which corresponds to the example

t schedule. The superscript gives the iteration numbers. The subscript gives the issue

. time of the node in clock cycles relative to the beginning of the schedule. Note that the

issue times are redundant; a node z ™ is issued at time x, =¢ + kp, where ¢ is the slot

time in the MRT. For example, the node j~2 has a slot time of 5, hence its issue time is

Ty .
F

5 +2:7=19. Although redundant in this example, the issue time is included to be

- compatible with later examples.

In addition to being a more compact ri:presentation of the schedule, the MRT is

also a convenient data structure for the evaluation of the while condition in step AS of

algorithm A. The while-loop terminates when a time slot is found whose use by the

current node will not cause resource conflicts. By using the MRT, the while-loop ter-

minates when there is an empty slot in the appropriate functional unit column. A

]

AR
4

58

S
AN
= ~r5rq'=' 2
4 4 " o

. 20
:_ . ‘.zs'-.
v P G
i (¢ Y
o o
\.; -" .\ !
g N 1_"

.
:
5
:

.
l

) - -
\ £ ke
" b "~ .;‘*.
> .
x o
. e
K:\‘ T R

\ LI
¥ c f N

v

Vjolwa|h[njawinvi=|Oo
b

=S
oo
&

§

-
[3]
o
'l

27,

L L A
.
b | b
&l
'

N o
P

’ 'y

-t
W
-,
L]
lr
r

-
o
(1}

[y
~

[y

[+]
1]

s

[y
L -]
.
' T -. l‘
v oy
~
5

Iad 14
Ll (=
N

o b

Figure 3.12. Schedule for acyclic dependency graph.

resource conflict occurs if two nodes are assigned to the same slot in the MRT. Full

utilization of a resource occurs when a column is completely filled. In this example the
N MEM column is full, hence the memory pipeline is fully utilized and optimal SR

throughput that matches ARL is obtained. R

33.2. Startup Time and Scheduling Complexity

Throughput optimal schedules achieve optimal performance only after several

loop iterations: the first few iterations are not optimal because resources reserved for

P
- .
YR
a e

. w¥ " 1y o TR RY U v 'y - . - 2o . - y!
S o
:- » t:‘-‘
O P o
s 59 0
! 93N
vI £l
. ! \ l‘..r
" R.-'Z i
' r\, 4)
3 g:-
v o TIME | MEM | ALU | IMP e
—_— ——
" 0 ad | k3 ks
. Sy,
1)@ | fat | o2
2 | 88 e
3 | & .
~ r.’.-.'
- 4 cd oy
¥ ;=2 =1 i
s 5 | Ji | A L
- 6 ed aQ gt
S Figure 3.13. Modulo reservation table for acyclic graph schedule. f::j-
8
o nonexistent previous iterations are unused. The number of suboptimal iterations is .:::.:
o related to the length of the schedule, I, defined as :‘..
r
i max{ x; }
. = |3N +1 gy
- P _
- Referring to figure 3.13, a schedule with length { = 4 has nodes belonging to iterations L
- -
2 —
L in the range O through —({~1) = —3. During iteration 1, the time slots reserved for e
;-_‘ nodes labeled as iterations -1, -2, and -3 are unused. In general, during iteration :j'.
- k.1%k <l, the time slots reserved for nodes belonging to iteration: labeled r
- —k,...,=(l—1) are unused. Therefore a schedule of length ! achieves optimal perfor- -__.i}
o R
- mance beginning with iteration [. N
KA N
O, o
Be In algorithm A the assignment of x;, was made based on the first available slot in L
3 -~
o the MRT. There is no reason why the first empty slot must be assigned. A shorter o
3]
D, o
¢ o
-
i S AT SRR L e T R T

60

schedule may be achieved by assigning x, to other empty slots, as shown in figure 3.14.
The number of assignments to each x; that must be mﬂ.:hed in order to find the shor-
test schedule is dependent on the characteristics of the dependency graph. Patel[33] has
shown that if the earliest allowable issue time for x; is ¢. only the assignments
t,t+1,t+2,...,t+p~—1 need to be considered in finding the shortest schedule. Thus
the number of assignments per node is upper bounded by p.

The complexity of an optimal throughput scheduling algorithm is strongly depen-
dent on how the algoritfnn handles the problem of startup penalties. The complexity of
algorithm A can be calculated as follows: There are n nodes to be scheduled sequen-
tially. Each node may, in the worst case, depend on every preceding node. Hence the
for-loop in step A4 requires O (n) iterations. The while-loop in step AS requires O (p)
iterations. This gives a total complexity of O(n2? + np) for the algorithm. If, as is

commonly the case, the number of predecessors of a node is bounded by a constant,

ad | hd

i dg’

ki7 | it
8) | fi

Ajlwalda]|]W IV]I=]IO
”,
]

Figure 3.14. Optimal throughput schedule with shorter length.

...................

B Al 2’ a

p—

:".. .Ig

“

-,
=l

RIS
C T
T
M|
ST
)
hermar
AR |
«

TR
FAKAR

LS PIE R A RS 5% £ WA R Ry ad SRS 0 AR RS A0 AR Aot d Ut I A Al S - S, ¢ 3 YN Wi o DR A ede o Wp gRAL DAL BN A aragh DA e aiid i mid aRe L oie i gak e el iob e,

> i Rl

61
! then the complexity reduces to O (np). Note that for acyclic graphs, p € n since full
.‘;\ utilization of at least one resource is achieved.

- Algorithm A has a relatively low complexity of O (np) because it generates an
t:. L‘ optimal throughput schedule but does not guarantee minimum startup penalty. On the L{‘i
’ other hand. to find an optimal throughput schedule with minimum startup penalty, it is
h i necessary to consider all feasible assignments of x; at step AS instead of the first feasi- '3.:3‘:::
S ble assignment. Since there are O (p) feasible assignments per node, the total complex- ‘”“
L . ity of such an algorithm is O (p*). Patel[33] has demonstrated an efficient branch-and- ‘
b bound algorithm for finding optimal throughput schedules with minimum startup _j
. penalty. In view of the fact that loops usually continue for many iterations and there- E"ﬂ
’I.:. fore the impact of the startup penalty is amortized over a long period of time, it may t‘-
. not be worthwhile to pay the additional computational cost necessary to generate a ‘._51
minimum length schedule. However, the need for minimum length schedules reappears)
- when more general graphs are considered. to be discussed in section 3.5. »-x:‘
C The observation that there are multiple feasible assignments of the x; leads to the é
. minimum complexity optimal throughput scheduling algorithm by Rau[31], shown in
;E; figure 3.15. Algorithm B has a lower complexity than algorithm A by making use of :\
; the fact that nodes can be placed anywhere into the MRT so long as they are in the E-::}
‘ proper functional unit class column. A description of algorithm B follows: N
(1) Steps B4-BS finds the earliest issue time for each node. These steps are the same as :
- steps A3-A4 in algorithm A. a
2 (2) Step B6 performs resource assignment. Each node is assigned a slot time, 7, ,-in 1
o the MRT. The counters. 7., keep track of the next empty slot time for each w
t resource class, ¢ € C. Note that the available resource limit assures that 7. < p ﬁ
o for every resource class c. | _:’,
- 1y
3]

.'r-%q
-y
LB

.
o . -
[.o,

. .l" -
., 'l'l

........

3
3

J
- -
SARC AR
Lo o)
) g
® n s
- S
- -

Y, N a v aW - SAe" play BA, Ry R4 258 L " ., Sotad Y e 2 L et N T e a AU Lo ST W

[}
-

- y .‘.::
: SR
d r -,
. 62 t- .,;:.f
-' lrl.:;
4 L

‘ * ey
, R
ARL RG0S

B1. K (N) e t t

. o,

B2. for eachc €C do 7, ~ —1 o ,

o t.f.

B3. for j+~1ton do S

> % 0 R
BS. for eachi emd(j) do xl O—mu{ x]'xl.F:f‘ } - E t
B e Tt SR
=]
xl — Tf 4 = ::..-::
o x’ ""._‘p—‘l“n G e

Figure 3.15. Algorithm B: minimum complexity optimal throughput schedule.

(3) Step B7 adjusts the issue time of each node such that it falls on the assigned slot
time, 7, . This adjustment is made by increasing x, . if necessary. to satisfy the

equation x; mod p =T, . Since nodes are assigned in topological order. adding

extra delay to the issue time of a node can never violate data-dependency con- '

straints in an acyclic graph.
Application of algorithm B to the graph in figure 3.10 yields the schedule shown in o '[j
figure 3.16. Optimal throughput is achieved since the MEM column is completely filled.
However the length of this schedule is seven, significantly longer than the schedule ZET
lengtk of four produced by algorithm A. In general algorithm B can be expected to pro- L_%
duces longer schedules than algorithm A. This longer length has an adverse impact on Qi‘; -‘_3
: loop startup, but may be negligible if the loop continues for many iterations. - ::A
- SRS
é Tae complexity of algorithm B can be calculated as follows: The loop in step B2 © ijj
L.. requires ¢ iterations. The loop in step B3 requires n iterations. The inner loop in step . \‘
1

PP R R S,

LA D NS N

";:A
g
’.’:..}:
o 3
TIME | MEM | ALU | JMP %
— .
o | a |ra |di o
1 b5t | R | R Yy
\‘:\':
2 cig | k& ol
3 esd E_-‘ 4
ety
4 | g e
5 | ig o
6 | jd@ =
Figure 3.16. Optimal throughput schedule from algorithm B.]
BS requires n iterations in the worst case. Therefore the total complexity of the algo- Ry
rithm is O (¢ + n?). Typically, the number of functional unit classes is fixed and the fi
Aildt
node fan-in is bounded by a constant. Under this assumption ¢ is a constant and the 8
nested loop in step BS requires a total of O(n) iterations. Thus the complexity of *
algorithm B can be reduced to O (n). This is clearly the minimal order of complexity j':-‘.‘ﬁ
“‘:\1
since each node must be examined at least once in order to generate code. E]
3.3.3. Summary '_-:_..’.‘:E*
i
Loops whose dependency graphs are acyclic can be scheduled to achieve optimal —~;
throughput using algorithm B. The O (n) complexity of algorithm B is minimal. This Z"j"jg.

zesult forms the basis for the proposed simple loop scheduling technique to be proposed.

AR
Algorithm B generates schedules that are suboptimal in terms of length. To gen- 11

erate schedules with minimum length requires an algorithm whose complexity is

......
b T e e e e e s
R ORI
L "]

AL WAL SRS) G SRS S C YA VAR AR A S S BRI VP LRI -t -‘L--A'..'.A;‘.,i.il-_':'g‘;ij

e 20
.\
-

.
LY

&=, -
64 A
) '.:

O(p™). This high complexity makes the generation of such schedules unatt: ctive for o,
acyclic graphs since the length of a schedule affects only the loop startup penalty and :_‘
not the loop steady-state performance. However the generation of minimum length o
schedules is necessary for the more general graphs in section 3.5. which involve mul- a
tinode recurrences. a
34. Scheduling Graphs with Self-Loop Dependencies R -]

In the previous section we presented scheduling algorithms for strictly acyclic ':
dependency graphs with nodes N = A. In this section we present an extension for han- g
dling dependency graphs that include self-looping nodes. but no multinode cycles. -
These graphs have nodesN =S |J A. -

One common source of self-loops is loop induction variables{34]. An induction
variable x is a variable whose only assignments within the loop are of the form B

=x + c, where ¢ is a constant or loop-invariant value. Optimizing compilers fre-

quently generate induction variables to step through arrays. For example, the Fortran
loop in figure 3.17(a) will be transformed into the loop in figure 3.17(b) by an optimiz- B .
ing compiler in order to eliminate the multiplication otherwise needed to evaluate the =3
address of A(i.j). Other sources of self-loops include reduction operators such as vector '
summation, and traversals of linked data structures. Statements such as p = p —*next]

in Cori =A() in Fortran are commonly used to traverse linked data structures.

Such statements cause self-loops in the dependency graph.

Consider a self-loop node i of the form x = x + 1. The operation in this node is
dependent on the value generated by the same node in the previous iteration. Since the

execution time of node i is given by s, . successive iterations of a loop must be
separated by at least s, clock cycles in order to allow enough time for the addition

N
function in the previous iteration to be completed. This constraint on the MII of a ORI

; ’- (‘ .

. s,
- L .

1 B L

¥

sy
hl
\

Pt et Lt Lt .t LN St PEA NP IS S T TR TN Y St
................................. AL AL TS AN T N .
e T e T e T e A A e e i Ao TSR SR L IVERIR I VEL YL NS

dimension A(10.20)
doiml m
doj=1,n
s=s+ A(i.j)
(a) source
doi=1l,m
a=&A(.1) &A(i, 1) denotes address of element
doj=1,n
s=s+% *a denotes load using a as a pointer
a=2a+10 Note Fortran arrays are column major
(b) object

Figure 3.17. Example of induction variable generation.

schedule is given by the self-loop limit (SLL). defined as

SLL(S) = max{ s;, }
ieS

For a general data dependency graph the following condition must hold.
MII(N) 2 max{ ARL(N), SLL(S) }
The existence of self-loops does not change algorithm B previously given for
finding optimal throughput scheduley, except that p is precalculated in step Bl to be
p = max{ ARL(N), SLL(S) }

Note that since p can be greater than ARL, full utilization of at least one resource can
no longer guaranteed. However the resulting schedules are still throughput optimal,

since SLL cannot be violated.

NN
PR

Ry
Y 2

Nl
".'.’.'-‘_ e

k2

.
]

5

L.

A

T
o

IS T T,

'l")“""l > .- Wt ‘. "'

IR TN T e
I WO A

vy

e, .
.

TR

AR

e t¥a Ve

L 1.

I} 1

...

66

K

It should be noted that many self-loops form linear recurrences{27]. Techniques &

are available for transforming these recurrences into faster forms when the SLL con- N
3

straint prohibits maximum resource utilization. The SLL constraint can be relaxed

when such transforms are applicable and used. These transformation techniques are ? -'f_‘
compatible with the scheduling techniques proposed in this chapter, but we shall not -,E
pursue them further in this thesis. _A_‘J
| s R
3.5. Scheduling Graphs with General Dependencies SRR
N
A general dependency graph may contain acyclic nodes and self-loop nodes, as ::‘_'. 1:3‘
well as one or more multinode recurrences. Consider a loop containing a multinode - L-v’
recurrence as shown in figure 3.18. Because the back arcs go from the very bottom of “ 3
the graph to the very top,. there can be no overlap between successive iterations. There- ;
fore maximizing the throughput of such a loop is equivalent to minimizing the delay E L-q
through the acyclic subgraph which excludes the back arcs. The problem of scheduling - i}‘\;
a set of dependent tasks on a machine with limited resources so that the total delay is R
minimized is the same problem as the minimum startup penalty scheduling problem, 8 E
and is known to be NP-hard[29]. However heuristics which work well in general are
available in the literature[29, 33]. It should be noted that although obtaining an ':
optimal schedule for multinode recurrences is NP-hard, it is quite practical' to do so if & L
the number of nodes involved is small. | S 4
Having established that in general obtaining a maximum throughput schedule for 5
a loop containing a single multinnde recurrence is NP-hard, one might consider finding a
way to decompose a loop containing multiple multinode recurrences into several smaller -
NP-hard problems, one for each recurrence. Unfortunately this is not possible in gen- a

eral. Consider the example grzph in figure 3.4. This graph contains two multinode

! recurrences {a.b,c} and {f .g.h.i}). Each of these can be individually scheduled -

2 e T SN N

s
'-(’r'v' .

PRttt
R T

_____ o et e v e S e S a ¢ o et T e N et e Tatata el
e I T I i e e I e T o T i e PO T ST NP YL Y et
- I R S I B A i T T T I e e PR PO PR MY .
Q) R P R P N R T P P P P P Y P P e P A T R A e

E it 2 G e 20 DAn Bie RAaChus e ~0on Ste " fla BAaNE ke “Rie T\

67

Figure 3.18. Example of multinode recurrence.

with an initiation interval of six cycles as shown in figure 3.19. Since the sum of the
resource requirements for both schedules is only five, it would seem possible to combine
the two schedules and retain the six cycle initiation interval. However, such a combina-
tion cannot be achieved in this case because g and { must be three clocks apart and this o
separation is incompatible with the two clock separation required tetween a, b, and ¢
as well as between ¢ and the following a. Since both schedules a.e rigid in the sense ~
that no node of either schedule can be delayed without increasing the p of that
schedule. the two schedules cannot be combined to form a joint schedule with an initia- -

tion interval of six.

LA AR A
3
Le b 0.

T8

i 4

s e S\ 2RI B i B AR Y8 590 W T T S e e 3 e R0 e Y AL NL I A Bt B Al SRS Al T g Y vl i et D ent S e R R N N e e e . .

68

TIME | MEM | ALU TIME | MEM | ALU
0 a 0 f
1 1 g
2 b 2
3 3 h
4 c 4 i
5 5

Figure 3.19. Example of separately scheduled multinode recurrences.

Because multinode recurrences cannot in general be decomposed, it is necessary to
use a combinatorial technique, such as branch-and-bound, to find the maximum
throughput schedule for a set of multinode recurrences. It follows that for a set of

multinode recurrencesR = { R;. R,. ...R,, }.
MII(R) 2 max{ MII (R,). MII(R,), ... MII(R,,) }

For a loop with a general dependency graph whose node set is

N=r UsUa

k=1

the optimal throughput schedule must also satisfy the available resource limit and the
self-loop limit. Therefore, once MII (R) is found by some combinatorial technique, the

minimum initiation interval for the entire loop must satisfy
MII(N) 2 max{ ARL(N). SLL(S). MII (R) }

At this point the following question arises: Is it possible to construct a schedule for N
such that the achieved initiation interval, p, is max{ ARL (N), SLL(S), MII(R) }? An

affirmative answer to this question would be significant in that once MII (R) is known,

e
[
a

g

. e
R
Lg% e te T e

R T L
. L LI)
LI

. , A

s i','.'. P
AR RSP M S SR

........................
.....................................
PN TR Sy

69

the optimal initiation interval p is readily found. A schedule for that initiation inter-
val must exist, and that schedule must yield the highest steady-state throughput

(neglecting startup time).

We have developed an efficient algorithm to construct throughput-optimal
schedules for simple loops with general dependency graphs, with the achieved initiation
interval p = max{ ARL(N), SLL(S). MII(R)}. Before presenting the simple loop
scheduling algorithm, we first present a formal specification of the optimization prob-

lem that must be solved to construct a throughput-optimal schedule.

3.5.1. Formulation of the Optimization Problem

A program loop is represented by a directed data dependency graph G = (N, D)
containing instruction nodes N = {1, 2, ... n}. Dependencies or edges between instruc-
tion nodes are represented by a n X n dependency matrix D =[d; ;] If two nodes i
and j are independent then d; ; = co. Otherwise d; ; gives the distance in loop itera-
tions between the source and destination of the dependency. If, in the current iteration.
node j is dependent on node i also of the current iteration, then the dependency dis-
tance is zero iterations so d; ; = 0. If node j is dependent on node i of the previous
iteration then d; ; = 1. If, through subscript or pointer analysis it is known that node
j can only depend on r;ode i of the k** previous iteration, then d; ; = k. Note that

d;,; 20foralli €N, j eN.

Recall that the functional unit class used by an instruction node i is given by f;

and so the execution delay of that node is given by s;,. Previously we have assumed

that there is exactly one resource unit of each particular class. We now generalize that
assumption by using u. to denote the number of functional units of a particular class

c.c €C.

T T S P e T T L L A

...................

.. o~ " -~ - - -
., - Ve Tl eyt te e (L S B et et -
PEIPEI S WA N PN IR R R AEADRPOT O . O S Y

WW " W T D e e Bl A Bl el s ot S Al e s
4 A Aat A - ~ fa Ty " 00a e ndl a2 -

rs
e

~ s
A 10

e T I)
»

.r"’ .

d —_e T E Sk S i

RDDEY O
- id

...........................

70

Let x; be the issue time for node i a;xd let the initiation interval for the schedule
be p. The problem of constructing a maximum throughput schedule is to assign integer
values to x; such that the initiation interval p is minimized without violating any
dependency or resource constraints. The problem of finding a schedule with 2 minimum

initiation interval is formally stated in figure 3.20.

Constraint (1) is necessary to prevent data dependency violations. Suppose j is
dependent on i of the same iteration. Then d; ; =0, so the constraint becomes
x; + 54, € x;. This inequality simply says that x; must finish execution before x; can
start. If j is dependent on i from the previous iteration, then there is an extra latitude
of p cycles due to the intervening iteration. This latitude is reflected by the term
—p-d; ;. Note that if j does not depend on i, then d; ; = oo, so constraint (1) becomes

vacuous for the node pair (i, 7).

Constraint (2) is necessary to preclude resource usage conflicts. Consider a clock
cyclet, 0 € ¢ < p. Because successive iterations of a loop are overlapped with a shift

of p cycles, a node of iteration & scheduled for time ¢ will occur concurrently with a

Assign x;,i €N, so as to minimize p subject to the constraints

X; +:f‘-P.di,} $ x, ieN. jeN (1)
n
28(c.t) € u, ceC, 0S¢t <p)
i=]l
where

1if f,=cand(x; mod p)=t

§i(c.2)= 0 otherwise

Figure 3.20. Formulation of the optimal scheduling problem.

@t ettt .« R RS NCUA N I D R I S Ca a v e

AT VAP N AL AR W A T T . SR i a'atsataty - atalatatsaatatalatlatatacas

JUF.

v .

SOW
T

L
B

L3

e e T S T s T
talaubatoalolelael

o A7

PEPLP. il TARJECI

LAty m,

-

LA

1 s

e

o

Lot SR

=y B A LU

-..-"-‘-— 170, 8, _n' ‘rv‘r‘ (‘_'. Sttt

—
;o

.

-,
.

Ra S P NS S0 A el 00 G LR R E L AL IO FM A M G A28 NS MRt e aiace

2

E W

! L

$ o

> \‘.:

v 71

"

node of iteration & —1 scheduled for time ¢ +7. In general, all nodes scheduled at ¢,

T t+p. t+2p, t +3p, ... will occur simultaneously due to the overlap. Constraint (2)
s

i states that the number of resources of a particular class, ¢, that are needed simultane-
: L ously cannot exceed the number of available resources. u, .

3.5.2. Initiation Interval Extension Theorem

Crucial to the simple loop scheduling algorithm is an efficient method for extend-
ing the initiation interval of an existing schedule. This initiation interval extension

method is given by the following theorem.
Theorem

Given a valid schedule for a graph N with initiation interval p' = MII (N), a new
schedule with initiation interval p >p’ can be constructed by reassigning the node issue

times such that
x 1]
X = x,' + (P""P.) |j;—J

where x;' denotes the issue time of node i in the old schedule and x; denotes the start-

ing time in the new schedule. Note that this expansion adds p —p' empty rows to the

5 end of the old MRT for the p‘ schedule.
- . R
: Proof: L
The new schedule is valid if and only if it violates neither the data-dependency 4
] constraint (1) nor the resource utilization constraint (2). K3
s v
R Part (a) — Prove data-dependency constraint satisfied for the new schedule: o ;
. R
.)
l'_: The data-dependency constraint states that ‘-Z:;'i
s 3
{ - ."1
i: - X4 +Sf‘—p'd“) —x, <0 . ":

5.
—
]
N
r-o

L. -t . S et et B O i T L T U O
A > alalal 3 Lala®™ al o o tata" ol a®a'a"a S la tata® > atatlaraltatatarararlras e ar el e e Al e e e e

SO LI i T SR Y Sl il i e gl e i sty e, Baedl s et Poggi oo ¥ 028 i o a Lt avalnt = iR Eaalee otp i g ol ’ o] IV IFETIRXY) 3
.
: o
‘
. 0

]
, o
n%, o
5 SRRt
- 72 ol
. P LY
E;
>, for every ordered pair of nodes, (i, j). Substitution yields tﬁ:
.) ;t-?'-s
. LA
\- x] x ' g ..‘%‘!
' f i ' . - ' —_! J < gt ryt
ha x;'+ (p—p)|_—-J +sp, —(p=p'+pdi) = |5, + (p—p) ||| €0 i,
P P s
&
Rearrangement yields
L
x;' x,' i
'x,-'*i-sf‘ -P"dl.J -x,']+(p"?') —i' -dl',j- L' <0 -
D P P v
:T:' Since the old schedule was a valid schedule. the original node starting times must w
. satisfy data-dependency constraints. Hence -
;:: x;'+sh -p"dg.) —x,'<0 :t:'
- Noting that (p—p') > 0, it follows that the data-dependency constraint for the new ﬁ
% schedule is satisfied if

o l"_J ~d,, - fi,LJ <0 3)
? P

The validity of the old schedule implies that

Xg' < x,'+p'-d,., —Sf‘

Since x;' appears in a nonnegative term in inequality (3), replacing that term with =

another term that is no smaller yields a tighter constraint. Thus, if

5 ‘+pid, , - :
; oI i 73 P L P
- p P

is satisfied, then (3) and hence the data-dependency constraint for the new schedule is

AR N PR
’ $ Lt
I T e e, e
s S A e oy e, NS
PRSI IE S ST PE LI L L
ORI B A A I
S YT S SIS SR A JPRY () L

e
.‘".".v"" 7]
Ay Ay A, O]

P oy

P
'y &
£ L

.
[ERN
4

-
. satisfied. Sinced; ; is an integer, it can be canceled to yield é& P_&;
--- -. '..-.
'os ' RO
- o R P 17 P oA
o P P FJ N
.. -
Nt

»

)

~ N
DK

» _".q‘

73

This inequality is satisfied since s;, 2 0. Hence Part (a) is proved.

Part (b) — Prove resource utilization constraint satisfied for the new schedule:

The resource utilization constraint states that

isi(c.t) $ U

i=1
for0 £t < p and ¢ € C where

1if f; =c and (x; mod p) =t

Si(c.e)= 0 otherwise

Let §;' refer to the old schedule and §; refer to the new schedule as defined below:

1if f, =c and(x;"mod p") =t
Sg'(C.t);‘ 0 otherwise
1if f; =c¢ and((x"+(p—p')l-;;-J)nwd p)=t

§i(c.t) =15 otherwise

Then the resource utilization constraint is satisfied if 5;'(c.t)=8;(c.t) or

equivalently if
L ’ x" L] [
’ +(p—p)|.p—,-”mod p=x'"mod p

for 0 € i € n. Replacement of the mod function gives

x;' xg'+(p—p')‘;'—,.J x':
xc'+(p-p')|.;'—.-J-p : =x:'—P'|.—'-. :

? 7|

Rearrangement and cancellation yields

...
...............................

U i LR AU S P
. s %

2 l<‘-—' ~ 4 .

x,-'
x; +(P—P)|T|)

p

Letx;"=ap’'+ 8 wherea 2 0,0 £ 8 < p', and «, B are both integers. Then

'+ B+ (p—pt) 2B+ B
ap'+B+(p p)L > i _lap 8
2 p’

Using the fact that ‘j‘p—p"'iJ = a, the equation reduces to

ap'+B +(p—pa =a
) 4

Simplifying yields

o + ﬂ =a
The equality is satisfied since 8 < p' < p and a is an integer. Hence Part (b) is proved.

3.5.5. The Simple Loop Scheduling Algorithm

The ability to extend the initiation interval of an existing schedule to accommo- " -
3
date more nodes allows us to adapt algorithm B to the more general case involving mul- = L—-\

tinode recurrences. Recall that algorithm B requires that the nodes of the acyclic graph

RS

be ordered in topological ordering. Topological ordering of the nodes in a cyclic graph is

oy

obviously impossible. Instead we use a topological ordering based on the acyclic super-

..

‘4 e’ et
IR

ALY I

N N

siructure graph{32] of the general graph, constructed as follows: X ;::'.:::_
(SR
(SRS
(1) For each multinode recurrence R, do the following: Delete all dependency arcs ~b '-:.:-i
3
whose source and destination are both in R, . Replace the nodes in R, by a single e
BN
new node, 7, , and connect all remaining dependency arcs to and from nodes in R, :Z: T
.:\-w'.:
N
g
-
e e e I N e e

[T

torg.

(2) Delete all self-looping dependency arcs from the node set S. At this point the

graph is acyclic. -

(3) Topologically order the acyclic graph and let the nodes form a sequence. For each
single node, r; , representing a multinode recurrence, R, . do the following: Expand
each r, back into the multinode recurrence R, . Place the nodes in R, into the
sequence so that if 7, was between the nodes x and y. then all the nodcq inR, are
placed between x and y. Reconnect the dependency arcs at r, to the appropriate

individual nodes in R, as before.

(4) Restore the self-looping dependency arcs from the node set S. At this point the

original graph has been restored.
This procedure produces the node ordering
N= {No.xl.Nl.Rz.Nz- e .Rm.Nm }

with the property that a set of nodes. N, , contains the nodes that, in the topological

ordering of the acyclic superstructure graph, fell between nodes r, and r, ;. Note that
Un=sUa
=0

The simple loop scheduling (SLS) algorithm, shown in figure 3.21, uses this node
ordering. Note that the SLS algorithm finds a maximum steady-state throughput
schedule for the loop, but makes no attempt to reduce loop start-up time. A description

of the SLS algorithm follows.

(1) Step C2 constructs an optimal throughput schedule { x,’. x',..., } with initia-
tion interval p' for the set of multinode recurrencesR = { Ry, R,, ... R,, }. using a

combinatorial search procedure. This schedule is extended, if necessary, in step C3

;-
)t
DR
RIS B

L M
’ ;.1’. Ty
N

RS PR A Sl) AN

¥
Ead

DN L LR

. ‘4" N

o)

.
L
b
2
"

;o
~

.
b

. Y

C1.

Cs.
Co.

C10.
C11.
C12.
C13.
Ci4.

C15.

C1s.
C17.
C13.
C19.

C20.

C22.
C23.

C25.
C26.
C217.

C28.

C29.

procedure simple_loop_scheduler (N)
construct MII schedule for R
extend schedule such that p = max{ ARL (N), SLL (S), MII (R) }
reserve_time_ slots (R)
assign__issue_ times (N,)
for k —1 tom do
delay_issue_times (R,)
assign_issue__times (N,)
end

procedure reserve_time_slots (R)
for each ¢ €C do
for ¢t «0 to p~1do Y, . ~«
. =~=1; Y ,.+~0
for each i €R do Y, map.f, « Y, mod p.f, = 1
end

procedure assign_issue_times (N,)
for each j ¢ N, do
xj -0
for each i € pred (j) do x; +~ max{x,,x;+s;,)
while Y,"'f‘

Xy =T
. ..,f_fp_fa]ﬂ,,

Y"h"‘ < Y’h"‘ -1

=0 do 'r,'c-'r,‘+1

end

procedure delay_ issue_times (R,)
d +~0
for each j ¢R, do
for each i €pred(j)-R, do d ~ max{d,x;+s;,~x, }

for each j ¢R, do x; =~ x, +pl—%.]

end

Figure 3.21. Algorithm C: simple loop scheduling algorithm.

76

re e

i

9

‘e
-"‘-{A
.

NEREE
.“I ’

AN AANAK
SRR)

1
.
.
.
.

L ol 8
T
s

Y
.
Tt
A IR
R
(i)
“o
'.-‘~
S5
.- te "
L P
R
.
e
e
T
‘. o
MY
SO
-® .
..
._-.}
. .
. Y
.

Catatals’

PR
A /‘-' 0y
.

o'e” . .,’ L3, % T T
- ".". i -. :
S ,‘ ',\'.':. |,.," S

O
JE DL NS

N :.!‘140.

. .
- £

R O SRk

—~—r
P

()

(3)

(4)

7

to accommodate the resource requirements of other nodes in the graph using the
x L]
formulax; =x;'+ (p—p") I'-;'-,-J previously presented.

Step C4 calls a procedure to reserve the resource time slots used by the schedule
for the multinode recurrences. Steps C11-C13 initialize counters, 7., and the
two-dimensional array, Y, which represents the modulo reservation table. Each
row in Y represents a time slot. Each column in Y represents a class of resource.
An entry Y, . gives the number of free resources of class ¢ at modulo time ¢.
Initially, all entries in Y are set to the number of available resources of the
appropriate class, u.. In addition, a dummy row, -1, has been added to Y to sim-
plify the handling of the 7, counters. Step C14 reserves the resources needed by

the multinode schedule by decrementing entries in Y.

Step CS calls a procedure to assign the issue times for the first set of nodes not
involved in multinode recurrences. This procedure is essentially the same as
algorithm B, with the exception that multiple resources of the same class are
allowed. Step C18-C19 finds the earliest issue time for node x,. Step C20 finds a
time slot that has a free resource of the appropriate class. Step C21 adjusts the
issue time of x to fall in that time slot. The resource is reserved in step C22.
Note that by selecting p to be no less than ARL, it is guaranteed that there will

be enough time slots to accommodate all the nodes.

Step C7 calls a procedure to adjust the issue times of nodes in a multinode
recurrence. This adjustment is necessary since the multinode recurrence schedule
found in step C2 does not take into account dependencies between nodes in a mul-
tinode recurrence and other nodes. Steps C26-C27 find the minimum delay that
must be added to the issue time of each node in R, to satisfy dependency con-

straints from previously scheduled nodes. This minimum delay is rounded up to

[

v »
oL v

)
atatalsle s

‘.."a
. .
» B P AP R
v ¢ 2
AR
A Y

_ ". Y\
<

o,
o<

-
T to e o

Loy

v
R
AT

.
A

PRl R Wity BB L e SN S SSNE ASRS B t i

e

L
P
Py

78

f

J

the next multiple of p and added to the issue time of each node in R, by step C28.

e

Note that dependencies between nodes in R, are guaranteed to be satisfied if every

v s

o

node in R, is delayed by the same amount. Also note that, because of the node

o o S o o CEC IR I 4
".J\.‘- PR ‘:-'4'1‘. s
?

ordering, nodes in R, can only depend on nodes previously scheduled and other
nodes in R, . Thus the minimum delay calculation in step C27 checks only those
predecessors of j that are not members of R, . These predecessors are given by the

set pred (j)-R, .

Fasts uo Ty T W v v
LR YT LT
St e Ty Sl T e

(5) Step C8 calls a procedure, previously described. to assign the next set of nodes not

involved in multinode recurrences.

3.5.4. Example of Schedule Generation by the SLS Algorithm

The operation of the SLS algorithm (algorithm C) is illustrated below, using the

example graph from figure 3.4, with

Umgm = Uazy =Upmp =1
Note that the alphabetic node ordering has been chosen to conform to the ordering E
required by algorithm B. Therefore No=¢, R;={a.b.c}. N;y={d.e}.

R,=(f,g.h.i},andN, ={j.k,l}.

(1) The MII schedule for the two multinode recurrences R, and R, is shown in =
figure 3.22. Recall that the memory pipeline is two stages long and the ALU pipe-

line is one stage long. The initiation interval p = 7 is already large enough to :‘ff‘j':

accommodate ARL and SLL , hence no extension is necessary. . i"r—-j

(2) Since N, is empty, the first step is to process R;. However nodes in R; have no '_
predecessor nodes outside of R, so the delay d = 0. < ‘.f.jt

e F-

ey

(3) The next step is to schedule nodes in N;. There are two nodes. d and e, in N, and

they are both dependent on node ¢. Hence the earliest issue time for both d and e

ASCH RO MACE A A ety " —rY x ot g et =
L
* E
& :-.
79
2B 2
:- . :‘*)
y T c:“_ d
O .) -
A TIME | MEM | ALU | JMP .'\- !
% b
l 0 ap f 0 E. g
. N 1 &1 el
2 b2 ol
h £
3 T
.o - b
- 4 ' -_‘.'_-.:,
Y ". :i,‘:-‘ .
: 5 is ‘:sf“:. ’
~ ra e
. SRS
6
ol b
R~ e
- te e

Figure 3.22. MII schedule for multinode recurrences.

is 6. The highest empty slot in the MEM column is row 3, so e is assigned at time

:t: 10. The highest empty slot in the JMP column is row 0, so 4 is assigned at time 7.
E (4) The delay for R, is computed next. Node f from R; is dependent on node e. «
.:_ ‘ Since node ¢ was issued at time 10 and the memory pipeline is two stages long,
a - node f must not be issued until time 12. To avoid causing resource utilization ‘.‘
~ conflicts the delay must be adjusted to the next multiple of p. Therefore the issue J
time of each node in R, must be delayed by 14 as shown in figure 3.23. t
~ (5) Finally, nodes from N are inserted as shown in figure 3.24. In this figure, super- t{
scripts have been added to indicate relative iterations. As shown by the super- '
scripts, this examnple schedule contains four overlapped iterations. This schedule ‘:.".
t produced by the SLS algorithm is the same as the example shown in figure 3.9. \E: '

.t‘
80 ¢

'.
o
NS
W= .‘_.
Wyt

ap f 14 d, " “}-

"
(SN

Wy

81s
Y

b, T e

€10 h 17 ':

4

it .

Al |lW]INw]=]O

Figure 3.23. Schedule after R, has been delayed. o

TIME | MEM | ALU | JMP 2

0 | af |fi? |di? R
1 | gi# | kF | IF o
2 | b2 g
3 e | hiF S
s \.‘:-.‘
5 4 cd RO
‘: 5 i -z .!".}
g 19 , - k
3 6 jid RN
- . PO
- Figure 3.24. Complete optimal throughput schedule. KO

: 355. Summary R
) The running time of the SLS algorithm can be derived as follows: Step C2 uses a n t~4
:4 combinatorial search method so in the worst case this step requires exponential time. . F:-i
However the combinatorial search operates only on the set R. We shall use the notation N *
A

e e e e e e o e TN S e T L Tl o L Lt T il T T e

......

81

IR! to denote the size of the set R and NP(IR|) to indicate exponential complexity

over the set R.

Assuming that the size of the set C is constant, the “reserve_time_slots™ pro-
cedure has complexity O(p + IR!). However since IR! € n, the complexity can be

expressed as O (n) + 0 (p).

The “assign_issue_times™ procedure is similar to algorithm B and has complexity
O(IN, |). Assuming that the number of predecessors per node is bounded by a con-

stant, the ‘“delay_issue_times” procedure has complexity O(IR, |). Since

m m
2 INg 1 + Y IR, | =n, the total complexity of steps C5-C8 is O (n).
k=0 E=1

Taken together the complexity of algorithm C is
NP(IRD+0()+0(p)

This complexity indicates that our algorithm is very efficient if either (i) the number of
nodes in multinode recurrences is small, or (ii) the combinatorial search algorithm for
scheduling multinode recurrences is efficient. In conventional job loads, simple loops are
usually small; larger loops almost always involve nested conditional statements and
hence cannot be processed by SLS. The number of nodes in multinode recurrences in a
small loop is of course also small. Therefore the contribution of the NP(IRI) term to

the complexity measure should not preclude algorithm C from being used in practice.

Aside from the NP term, the remaining complexity, O(n) + O(p). is optimal
because (i) every node must be visited at least once to generate code, and (ii) every
instruction cycle (every row in the MRT) must also be visited at least once. Since there
are O (n) nodes and O (p) instruction cycles, the complexity of O(n) + O (p) is clearly

minimal.

8

;,',,3;
ML

,'.. "‘v 7,

v

,..
:‘{‘Q

Loy
K

T
r

b e S Vbl Tt St i Nt B M A A e St AR e R bRy e e WA She -l e Sile = N —Ra S e L N R Sacg e fn - A4 Sl haoliie "R Rac ha ik e b i e SN eacienc AY

82

Significantly, our algorithm is able to generate an optimal throughput schedule in =
linear time if the loop is vectorizable on a conventional vector machine. If a loop is vec- o
torizable, then there are no multinode recurrences within the loop. Hence R = ¢, so the

NP term vanishes in the complexity measure. ¥ ~f1

PR

.
.
*
'
lll.

. R R . . .'.-. - " . . - - . - - T e w = - LN . . - -t ERC) - . T T e T U Y
D) EAE R A Y P T S U U ST W S SO VS DO T R SRR SR e Wl W PSR NN T et e s
A A T TS A L LRt I R e et e adatar -'~'.‘.'.‘.'.‘.‘-‘.‘-‘.‘\'.‘~.‘-'.'.\'.‘-‘\.‘.
PR R T LY S SN PR 7 L PR PP LIPS R UL Pk 5. DU, W) W Wi o WAL VR AP WA W R~ VUK | OF WY WK WA W S wor i b

ATt ottt At A At e\ e d B e 0 8 A AL A S ul o i at A L b ad b ka0t it o Sl s e S o s Ly v
(Rt B e e a AN VLAY Sl w e gt e i el . ™
.-D

1
R
s,

I"’-r, RN W"' A
et T Te e
L LEng L. .. '-. . 'I

83

CHAPTER 4

A

S
By Nty A 0,
PR

MACHINE ORGANIZATION AND CODE GENERATION ISSUES

o

¥

»

"" .’l y F‘

LR A H

4.1. Introduction

The study of compiler code generation techniques is necessarily dependent on the

LRt

choice of target machine model. One of the most important considerations in choosing a

.
ooty

target machine model is the level of abstraction. A highly abstract model is advanta-

PSS ki .
o hp hy . '

r .
0
r

geous in that the scheduling algorithms developed for such models are unencumbered

by implementation details. This may lead to clean theoretical results which give

A

RESRTTR N 4

insights to the solution of global problems. Unfortunately some of the implementation

details ignored by a highly abstract model may turn out to be critically important con-

straints or efficiently exploitable architectural features. In this thesis we have chosen to

RENEN
BRP RV P 3P SR

develop scheduling algorithms based on a fairly detailed machine model in order to

explore the relationship between machine organization, instruction set architecture, and
compiler code scheduling techniques. This chapter describes the target machine model,

discusses implementation considerations that motivated the machine organization, and

develops solutions to the practical code generation problems of register assignment and L
g branch handling.
g
t -, The proposed target machine is a Tightly-coupled Heterogeneous Multiprocessor. l:;“_

(THUMPER). This type of machine is characterized by the following attributes:

Tightly-coupled \
f” System synchronization is provide by a single system-wide clock to achieve low- [_
overhead interprocessor synchronization. Individual processors are interconnected e

by a high-bandwidth low-delay network to provide high-speed interprocessor

_ ol
84 :
i o
communication. :
Heterogeneous multiprocessor :‘ :
A high degree of concurrency is provided through multiple processors, each of -~ i
which may be pipelined to increase performance further. Improved cost- -
effectiveness is attained through the capability to mix identically replicated
" general-purpose VLSI processors and heavily pipelined special-purpose functional |
units, and by the capability to parameterize both the size of the multiprocessor -
system as well as the composition of the processors. .
Figure 4.1 shows an example configuration of a THUMPER with three processors: an 2 i
; integer arithmetic processor, a floating-point arithmetic processor, and a memory access :
: processor. The processors are interconnected by a crossbar network with embedded
-

/
- / l
/ -
Z L
yd
4 / ¢
7 o
INTEGER FLOATING MEMORY INTERLEAVED i

UNIT PT. UNIT PIPELINE MEMORY

SH

Figure 4.1. Block diagram of a THUMPER configuration.

........

- - - «¥ . T T e Te T e e T et e o e T T et a Y L s e e T e et At e a e e s L st e T T e T, e e .
e e e e e e e L e e
DPRPEIRPL 4 LN AL ST R ER T AL N L-_ALA PRI AL T DA T DR VA T U U U AT T U W DA T TG DUF DA WP DL T I s o

AD-A163 195 HIGHLY CONCURRENT SCALAR PROCESSIIB(U) lLLINOIS UII\' RT 272
URBANA COORDINATED SCIENCE LAB HSU JAN 86
UILU-ENG-86-2203 N@0O14-84-C- 01.

UNCLASSIFIED F/G 9/2

NL
END

b

s 7

” .-. ‘. :) -4' i

. ." .‘l _‘l 'l‘,.l. *

Y., e ORI g
—

AThp iy T iRy S W R) ke v - N o .
TN 1T Y R L A0 Y gl 5 S AN e L S B s, A% A ' W0 s rerr——

ot
!

-
P)

{

Hog
e

FLEEEEER
N
N

EEEE

er

£

[13
N
o

|]
o

>}

B

-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

RIS -:‘.f*v o

.
R :
AL SN
OVOMERES TR LN X

LY RS AS N P N P oy R 0 vy RINE LM o g Wl i MR ST L N TR Boe S) et ras L it
.

&
‘4
= 85
i. . storage capability at each crosspoint(35]. In the following sections we discuss some of
o the design considerations that lead to this machine organization.
T 4.2. Processors and Memory System Design
B - The design of processors is influenced by two conflicting requirements: low cost
and high performance. In a multiprocessor organization, low cost can be achieved by
; replicating identical multifunction processors, particularly using VLSI technology. On
the other hand to achieve very high performance it is usually more cost effective to use
a suite of heavily pipelined specialized functional units. A heterogeneous muitiproces-
- sor organization captures the advantage of both by incorporating distinct classes of pro-
cessors. The organization of each class of processors can be optimized to achieve max-
imum cost-performance. Additional parallelism can be provided through replication.
8 In our study of code generation techniques we have found that certain constraints
- on processor designs significantly simplifies and/or improves the running speed of
scheduling algorithms. Here we distinguish between explicitly-scheduled resources and
. implicitly-scheduled resources. An explicitly-scheduled resource is a resource for
- which contention may occur. An implicitly-scheduled resource is a resource whose
2 availability is guaranteed provided that its associated explicitly-scheduled resource was
e available at some prior time. For example, the first stage of a linearly pipelined func-
“ tional unit shared by multiple processors is an explicitly-scheduled resource while all
the subsequent stages are implicitly-scheduled resources since the availability of the
-\ first stage guarantees the availability of all subsequent stages at the proper later time.
-: s From the point of view of code generation, explicitly-scheduled resources are the only
!E ones that need be considered. and we shall use the term resowrce to mean explicitly-

scheduled resources unless otherwise noted.

L. 14 (% et Rty 1 kn ey e e RO b ot B B 5 i o S e R ORI gl s RS I g L3

o
5
L
M
"
L
1,
L
~ - n-E'
A e

P
N
-,

-

A 4 -
a8

.&:‘

e

e

e
-

A
u.

TR

A most important consideration is the number of resources and the time lag

o
between uses of those resources for each individual instruction. All such resources and ?E; ¢ e
their relative time slots must be considered when scheduling each instruction. The sim-)
plest case is when every instruction uses exactly one (explicit) resource. In this case E
deciding whether a particular instruction can be scheduled for execution requires exa- “ :;\i;\
mining only a single variable at a single instant in time. If an instruction uses multiple B,
resources during different phases of its execution, then it becomes necessary to examine ' g:—ﬂ
multiple variables at different times to decide when an instruction can be issued '~
without subsequent conflict with other instructions. The need to check resources at | ‘ ‘

different times causes difficulty during the scheduling of loops because decisions made at
the beginning of the loop must be sensitive to conditions at the end of the loop (of the

previous iteration) which are yet unknown.

In our target machine we have decided to allow only one explicitly-scheduled
resource per instruction and require that each resource be capable of accepting a new
instruction per clock. This means that if, for an instruction such as z = x + y, the
explicitly-scheduled resource is the adder, then the register file containing x, y. and z
as well as all the interconnecting busses must all be implicitly-scheduled resources. In

other words, dedicated register file ports and busses must be associated with the adder.

Furthermore, the adder itself must be a simple pipeline with no shared or looping

stages. For multifunctional processors, one resource per instruction implies that every = k.%

function must take the same amount of time to flow through the pipeline, otherwise the - ':_j;

E x output bus becomes another explicitly-scheduled resource. 1
:: Another important consideration is the number of processor classes, and their "'
i characteristics, that can execute a particular instruction. From a hardware utilization ﬁ ﬁ'_i
L point of view it may be desirable to provide both a fast floating-point adder as well as :L‘_: '.:;._-j
' oy

.......................................

ENE e Pl Ll fag baa b Tt i Noig £ a P o T g tig S fea AR AT S A md B F A e Coi Gan B s 3 e € e Bali. e o

s
87)
slower microcoded floating-point point addition on a multifunctional processor. Unfor-
tunately to utilize such a system fully the compiler must, for each floating-point add g?:*:
instruction. choose between using the fast adder and possibly delaying another more ‘c
critical add instruction or using the slower multifunctional processor and possibly f
delaying several more critical instructions of as yet unknown classes. Choices of this ;..{_:;:E
type are called global choices since one decision may impact other choices in the future. t{{'
In contrast, choosing among several dedicated adders of identical delay is called a local .
r choice since this decision has no effect on choosing a schedule time for other instruc- E._:
t-l ; tions.
*c To generate high quality code, a compiler must occasionally backtrack and recon- '-::,-..
L sider earlier decisions. However only global choices must be reexamined. Hence, to b
L:: . reduce compilation time, it is desirable to minimize the number of global choices that :
must be made per instruction. In our target machine we have decided to partition the e
_‘ processors into classes and bind every instruction to a single processor class. Processors
E of a given class are therefore identical and hence it is a local choice to decide which one '

to use. With this constraint the only global choice is to decide when to execute a partic- "~f,
e
N ular instruction. .-_-_:.;
1
: ~ Y
Determinacy of execution time is another important consideration. Resolution of =
B '
N conflicting resource requirements at compilation time is highly desirable to avoid the =
:,: - cost, in both hardware and run time, needed for arbitration and synchronization. To \
- achieve this resolution, the compiler must be able to predict the exact execution time of e
o
every instruction. Because we already restrict processors to be linear pipelines, the exe- ol
. - [
e
cution time of most instructions is completely deterministic. The time for a memory ::3.'?
Qg reference, however, cannot be made deterministic because of memory bank conflicts Ry
ooy
.. and/or concurrent input/output operations. We have chosen to model the memory sys- ::-‘,;3-
- RO
V)
RO

SR B
Al A

~
(]
re

Ky
L. e el e g e T e et c e PR g '“""""‘-"'.'..‘.""
....... By AT) 20 S RAS LYo

E R W N W g S M T To W tu ™ S L g i LR LT K Ch e C ol ialh e et R ACNE S R R &

et 1 RN

»

o ¥
2°57%2

»

s
4

tem as a set of pipelines whose length is equal to the memory reference time in clock
cycles. When bank conflicts occur, the entire machine is frozen until the conflicts are

resolved.

4.3. Storage-Enhanced Crossbar Interconnect Design

As shown in figure 4.1, the heterogeneous processors and memory pipelines are
interconnected by a crossbar with embedded storage at each crosspoint. The storage-
enhanced crossbar interconnect was chosen because it simplifies and/or solves a number
of difficult implementation and code-scheduling issues. The concept of a storage-
enhanced crossbar interconnect is not new, and many of its advantages have been docu-

mented[35]. We now briefly review some of these advantages.

In the previous section we discussed the importance of minimizing the number of
explicitly-scheduled resources. The crossbar is the only interconnection network that
provides dedicated busses for every processor and memory and a dedicated switch for
each possible connection. Therefore all the busses and switches are implicitly-scheduled
resources. Other interconnection schemes using shared busses and/or switches neces-
sarily introduce additional explicitly-scheduled resources.

A similar line of reasoning leads to the decision to embed the register file within
the crossbar interconnect. In order to avoid generation of additional explicitly-
scheduled resources, a register file port with no access conflict must be dedicated to each
processor port. As the size of A multiprocessor system increases, it becomes impractical
to implement a single centralized multiported register file with the required number of
conflict-free ports. One solution is to decentralize the register file by distributing the

file memory into each crosspoint of a crossbar interconnect.

Referring to the crossbar in figure 4.1, the register read data busses are shown

vertically while the register write data busses are shown horizontally. High write

vy

-

e
oo

‘I

TN ."..".
PO

Yt

’
LA

I

“N

o

T # w @
P o
PR R AN
LU L)
.' l' '. '. *
PN
o W P P

'. '}!
5

r

. . .
o
et .
LA .
S,
Ty D)

OPTEUS

. - TN
A . o
. . o v 0.
. "- s
- .
DR AR [

2]

| 3P

-

89

bandwidth is provided by partitioning the register file and associating a distinct parti-
tion with the output port of each processor and memory pipeline. In effect, each output
port is connected to a separate file memory so that every processor and memory can
simultaneously write into the register file without conflict. High read bandwidth is
provided by replicating the data within the register file once for each processor and
memory read port. This design allows an arbitrarily large storage-enhanced crossbar to

be constructed using two-ported random access memories (RAM).

Replicating data to increase register file read bandwidth increases the cost of the
system but poses no problem for the compiler since the replications can be made archi-
tecturally transparent. Partitioning the register file to increase write bandwidth, how-
ever, cannot be made architecturally transparent and hence has a strong impact on code
generation. For the machine configuration shown in figure 4.1, the architecturzal view of
the register file is shown in figure 4.2, assuming for this example that the RAM at each
crosspoint contains only four words. Each processor can only write into those registers
that belong to the partition corresponding to the row in the crossbar connected to that
processor’s write bus. However, since data is replicated across all register modules in a
Tow, every processor can read registers belonging to all partitions. Although this distri-
buted register file architecture has implementation merits, it does introduce additional

code generation problems. We shall return to this issue in section 4.6.

Another reason for embedding the register file within the crossbar interconnect is
to mitigate the high cost of the crossbar network in terms of chip count. Here we
assume that the physical size of a chip package is determined by the number of pins and
not by the amount of logic contained within the chip. Given that a large number of
pins are needed at each crosspoint to interconnect the two orthogonal word-wids data
busses, the addition of a small RAM to each simple crosspoint switch should not

P IR "4 T AR TR AT TP T VR RRET. A I IR TR TWUR Y S P M AR T R AR S TP T A R W IR W XTSI ALY

..............

Registers read- registers writ- registers writ- registers writ-
able by all able by integer able by able by
processors unit floating-point memory pipe-
0y unit line
1
& ril rll
x r10 rl0
' 9 9
o r8 r8
E::‘. 7 r7
- r6 6
- S rS
3 r4 r4
r3 r3
r2 r2
rl rl
r0 0
Figure 4.2. Architectural view of register file.
> significantly increase the physical chip package size. It therefore appears that storage &
can be embedded within the crossbar at very low cost. B

The scheduling techniques we have developed make use of the substantial local
memory within the crossbar interconnect to replace more conventional scalar and vector :
register files. Moreover our techniques also use these embedded local memories to hold =
prefetched data, thereby reducing the need for a data cache. In most high performance -
processors, the physical space devoted to register files and caches is quite substantial(1].
By using the storage-enhanced crossbar interconnect to replace both of these, we feel

that the high cost of the crossbar interconnect can be justified in a system context.

91

4.4. Control Unit Design

The THUMPER is controlled by a single control unit and synchronized by a single
system-wide clock. This approach has a number of advantages. Using a centralized
clock and a global control unit leads to a highly deterministic system whose detailed
run time behavior can be accurately determined at compile time. The compiler can
optimize the code by knowing the actual behavior of the machine, instead of knowing
only the statistical behavior. Another advantage of using a centralized control unit for
a multiprocessor is the elimination of run-time arbitration and synchronization over-

head for interprocessor communication.

The THUMPER uses a wide horizontal instruction format as shown in figure 4.3.
This instruction format is very similar to that of horizontal microcode, hence architec-
tures based on this type of synchronous multiprocessor organization are also called hor-
izontal architectures(9, 30, 31]. A separate field is allocated to each processor, plus an

additional field for branch specification or an immediate constant. Each processor field

opcode input 1 input 2 result
(specific register register register
to unit) specifier specifier specifier

.
.o
.
-
.
-
.
o®
o
.®
..
o
.
®
e
o
»
-
.
.
.
3
.
-
o®
o
.t
a0

INTEGER | FLOATING | MEMORY BRANCH SPECIFIER or
UNIT PT. UNIT PIPELINE CONSTANT VALUE

Figure 4.3. Horizontal instruction format.

N gt T o)

s
A7

lll" l.'

92

-
P

7

contains an opcode specific to that processor class. Two register specifier fields are used
to address input operands resident in the register file. Another register specifier field is o«
used to address the result operand. Note that the input register specifier fields are large
enough to address every partition in the register file while the output register specifier

field is large enough to address only the one partition that is writable by that processor.

We chose to use an almost purely horizontal instruction format rather than a
more vertical format because we have found that the flexibility offered by horizontal
instruction formats is essential for the exploitation of parallelism in a wide range of
application programs. As discussed in chapter 3, more highly encoded vertical instruc- [
tion formats such as those generally employed by vector architectures are unable to

exploit much of the parallelism available in those program loops that involve multinode

recurrences. Vertical instruction formats are also unsuitable for the exploitation of ﬁ

\ parallelism available in scalar program fragments. .

The control unit is organized as a linear pipeline whose length is equal to the pro- :t:'

" gram memory access time plus the time needed to decode the instruction. The program n
memory is interleaved to supply one instruction per clock cycle. It is further inter- N
leaved so that most of the time a branch to an arbitrary bank will experience little or
no delay. When a memory bank conflict does occur, the simplest approach is to stop the - . “
processor until the conflict is resolved. = J

We have chosen not to include an instruction cache in our proposed target _':'_.: Gy y

- machine. To be fast. caches must be constructed using a relatively expensive technol- ~ L—-l

ogy. and the physical size of the cache must be kept small in order to reduce cost and .

minimize the physical separation between the cache and the processor{36). However, a " \\J

major reason for incorporating an instruction cache in a machine is to reduce the time

oa s

needed for a taken conditional branch. Therefore rather than using an instruction

DR B AL AR
/ LA Y .'.-'.r"'.,','.
S o ~|_.-;‘4_l,‘.‘a N

oL .d

-
C -~
.

NEM RN

Ll B R

93

cache, we have chosen to rely on compile-time code scheduling technology to minimize

the performance impact of long branch time.

A linear instruction fetch and decode pipeline lends itself naturally to an architec-
ture with delayed branches{S, 6, 7]. Our scheduling techniques are designed to take full
advantage of relatively long delay branches, under the assumption that to achieve high
clock speed it is necessary to partition the instruction fetch and decode pipeline into
multiple segments with fine granularity. The DTS technique performs extensive code
rearrangement to allow a sequence of delayed branches to be overlapped, thus reducing

the average delay of conditional branches in scalar code.

4.5. Machine Parameters

We have described an expandable multiprocessor organization and discussed the
rationale behind some of the design decisions. The significance of this organization is
that it can be efficiently implemented using current technology and it can be completely
characterized by a small number of parameters. The ability to capture concisely all the
corstraints imposed by the machine organization has a direct impact on the develop-
ment cf scheduling techniques, both in simplifying the algorithms as well as in improv-
ing the efficiency of these algorithms. This section describes each of the machine param-

eters.

The universe of instruction opcodes is given by the set F. This set of opcodes
defines the functionality of the instruction set architecture. Elements of F include the
usuzl integer and floating point arithmetic operations, logical operations, memory opera-
ticns, etc. The exact membership of F is a relatively low-level design issue, and is
beyond the scope of this thesis. We do. however, require that F include the guarded

store and guarded jump instructions described in chapter 2.

_ ¢

e T V.5 e

o 8" .

94

The set C defines the processor classes. An element of C can be a multifunctional
processor, such as an integer unit that can perform all the normal arithmetic and logical
functions (e.g. an ALU). Elements of C can also be unifunctional processors, such as
specialized floating point add and multiply pipelines. Since we require a disjoint parti-
tion of functionality for different processor classes, a function f; can be defined to map

each instruction opcode i onto one particular processor class.

Multiple processors of the same class can be incorporated for increased parallel-
ism. However we require that all processors belonging to a particular class be function-
ally identical. The number of replicated processing units of 2 particular ciass ¢ is given

by u..

Since the organization of each processor is constrained to be a linear pipeline and
since every instruction is constrained to flow through every pipeline stage, the temporal
characteristics of a processor are completely specified by the number of pipeiine stages.
This number is given by s.. where ¢ is a processor class. Note that by modeling the
memory system and the instruction fetch and decode process as linear pipelines, we can
define a “memory" processor class and a “branch™ processor class to model the schedul-
ing constraints imposed by the operation of these resources. The parameters for these

processor classes are exactly the same as for any other processor class, namely s and «.

Pipelining within the storage-enhanced crossbar interconnect can be handled sim-
ply by treating the interconnect pipeline as an extension of the processor pipeline, since
the resources within the crossbar are all implicitly-scheduled resources. Therefore the

additional delay within the interconnect can be charged to s, .

The parameters f;, ., and s, are sufficient for describing the processing part of a
THUMPER implementation. The register file is characterized by the size of the RAM

within each crosspoint cell. Note that there is no need to specify the number of seg-

b

B

s

’
s e e
P

Cr

-

0
ol te et

...
.........

.................

sl Al ™t Nt
AROIS Iy S I IR SN

e

ot - Rt o R TR s, . P e p 4. aby pio st af - TR T

95

ments in the register file since that is implicitly specified by the number of processors,

which is equal to Y u,.
ceC

4.6. Register Assignment Issues

As we alluded to in section 4.3, the distributed register file introduces certain code
generation problems that do not arise in a conventional centralized register file. Refer-
ring to figure 4.2, the problem with this register file architecture is that to fetch a value
it is necessary to know which partition the value is in, i.e. to know which processor
generated that value. Sometimes, however, it is impossible to know at compile time

which processor will generate a particular value, as shown in the following example.

if (...) x = Al
else x=b*e¢;
z2=x+y:

If memory fetches are handled by one processor while arithmetic operations are handled
by another processor, the value x must reside in different partitions depending on the
outcome of the if-statement. This uncertainty causes problems for the compiler when
it tries to generate code for Z = x 4+ y since the the location of x cannot in general be
determined at compile time. Note, however, that this uncertainty can only occur when

the basic block containing z = x + y has two predecessor blocks.

To solve this problem we have zlected to constrain the compiler to use registers
only for temporaries within a tree of basic blocks. Because each basic block within a
tree (except the root) has exactly one predecessor block, it is always possible to identify
uniquely the register file partition that a temporary value resides in. During tree tran-
sitions all temporary values must be stored in memory. Therefore the fact that there

are multiple predecessor blocks branching to the root node of a tree does not cause any

problems.

%
L

-~

'
|

v

.,,.,,,
» v" ." "‘"-".: b '~-"
ALY

.
.
X

'/v""»'

)
o'e

s

Y

Ex TR T A A I
o
ot T

. .. RS
2 atas"alaataiatainta

Sy
e %o s |

i . Oy 1

=,
. v

TR T TR

9%

The scheduling technique proposed in chapter 2 directly implements this idea by
representing programs as decision trees, hence register assignment with the DTS tech-
nique is straightforward. The simple loop scheduling technique proposed in chapter 3
can also implement this idea because an unrolled simple loop forms a highly skewed
decision tree. A method of register assignment for the SLS technique is discussed

below.

The example optimal throughput schedule produced by the SLS algorithm in
figure 3.24 has length [= 4. At any one time there are up to four iterations being exe-
cuted concurrently. Therefore each temporary value name shown in figure 3.24
requires four physical registers to accommodate the four distinct values that exist con-
currently. Since each instruction operand specifier must reference four different regis-

ters at different times, there is a problem with name binding.

An innovative hardware addressing scheme to solve this name binding problem
has been proposed by Rau(35]. This approach uses hardware queues with the capability
of deleting any element within the queue. Queues are used at each crosspoint of the
crossbar to allow relative register addressing, thus implementing run-time dynamic
name binding. Although elegant, the use of hardware queues with random deletion
capability rather than RAM to implement the distributed register flle significantly
increases the complexity of the system and can lead to additional delays in transferring
data through the register file. Thus this approach has a negative impact on both perfor-

mance and cost-effectiveness.

We advacite a much simpler approach that uses additional program storage space
to solve the name binding problem statically. Our solution involves unrolling the loop
l times, where ! is the number of overlapped iteratiuns. Figure 4.4 shows one iteration

of the schedule from figure 3.24. Each instruction is shown in detail to illustrate regis-

..........................

’, '1 W

[B
I .]

‘e ":".:'_"-}..4

v,y
r
!

]
S
]

fif B
ol

ey
D
‘

ey
4 S

I
L2

“ ""“’,"', Tt '.1' r
. EAEATMEAEN
. [PRI

(1

_ , e
R o IS .""':'.-".".'-, AR
., 25NN LI . .
ot [PP LA Prato .

" " r1

A RN
LY e

{“‘ e v
ot e e e,

n

-,:,-."

.'!‘(l f.
et A

(<
ATV

)

L}

L}

[] 1]
PRVAV Y

v
" -“ "’ 4
PUIAES

Y
.,
P
]

. ,'x':'

,1
i

:

A !

oy ay

a‘ ”l
Ay

£ rr v

v %y
L4

ouqmuaw&-—co“
x
Cp

[y
(=]

[
[&Y

[y
(¥

[y
[V]

— . —
foreo+i,

[y
K-S

[
(73

-
[,

[
3

ho“go<<2

—t
-
1,

.

[y
O

io +~ R.index (ho)

]'o « R.value (ho)

ot WP .
.
Ay relte Rl

(%4
o

’ .
v,

~
Pt

[
~

ko—=k3+ jo

SRIR|S

~
~

Figure 4.4. Detailed representation of a loop schedule.

YN

RN 4

F A AOARAT,

’

cePNS

ter assignments. The JMP processor class instructions have been omited since they are

not germane to this discussion.

The register names shown in figure 4.4 have been given subscripts to distinguish
among the four physical registers. Note that instructions a, f , and k reference regis-
ters with subscript 3, indicating that these values are to come from previous iterations.
The schedule shown in figure 4.4 represents the first of the four overlapped iterations.

The schedule for the remaining three iterations can be derived by successively

(i) rotating the original schedule by some multiple of p clock cycles, where p is the
initiation interval, and
(ii) incrementing the register subscripts by one, modulo I .

Figure 4.5 shows the complete schedule with four overlapped iterations. Note that
every instruction now has a unique symbolic register address that can be mapped into a
unique physical register address. Therefore the register file can be implemented using

an ordinary RAM.

Compared to Rau's dynamic name binding, our approach of loop unrolling to
achieve static name binding requires [times more code space per loop. However, we
believe that loop unrolling is a more cost-effective solution because it reduces the com-
plexity of the machine. Reduced complexity allows the clock speed to be increased and

also reduces the design cost of the machine.

4.7. Architectural Considerations for Delayed Branches

The architecture of branch instructions has a strong impact on the complexity of
code optimization techniques. The THUMPER instruction set includes delayed branches
with guard expressions as described in chapter 2. This section discusses some architec-

tural considerations for branch instructions.

s
AL

mxa TV

o

RRRIRE
DRRARAN

N
"u '.n

e N
2870

L 2
lll,,
%

Ly

¢
)

g

-1l

oo 99
\
|
- TIME MEM ALU
3 (.: 0 aq +~ arc(cy) farey+iy
K 1 g2+~ T(f2) ky=kot+ j;
. g 2 by~ l(ao)
E ~ 3 ¢ + data(c,) hy=gy,<<2 .
- 4 | cor nodedp X
e 5 | i; = Rindex (hy) e
: * 6 Jj2 = Rvalue (k) — %\?G
Lo 7 a, ~ arc(cy) fares+i, e
©o S | 6-TU) | kmkitis 3%
Ay 9 by~ 1(ay) E:
A 10 eo ~ data(c,) hy»=gy3<<2 ey
- 11 | c; = node(s,) o
: 12 | iy = Rindex (hs) e
N . 13 | j3 = Rwvalue(h,) E—f
) 14 a, « arc(cy) fo=eo+is
g 15 2o~ T(fo) ky—ka+ j, ::.';::;
- 16 by ~ 1(a;) £
- . 17 ey —data(c,) | ho-go<<2 =
o 18 ¢z ~ node(d,) R
' 19 | io + Rindex (h,) e
20 | jo = Rvalue(ho)
v 21 ay ~ arc(cy) fi=e1+ig E::
;= 22 g1 T(fy) ko=ks+ jo Qe
- 23 bs ~ 1(ay) o0
: 24 | ey -datale;) | hye gy <<2
S 25 ¢3 «= node(b,) ;-;',.7
- 26 | i, = Rindex(h,) !\"":
: 27 | j; = Rvalue (ny))
y o=

. ~
¢ Figure 4.5. Complete schedule with register assignments. E

vt e
B

-

100

Recall that in the description of the decision tree scheduling technique in
chapter 2, guarded jumps that branch from an exterior block of a tree to the root of
another tree are scheduled in priority order just like any other instruction. The prob-
lem with this strategy is as follows. Suppose branches have delay k. This means that
the terminal branch on 2 path through the tree should be scheduled exactly k cycles
prior to the end of the path. However, before the path is completely scheduled, the
compiler cannot determine how long the path is going to be. Thus until after it has gen-
erated the entire path schedule, the compiler cannot determine when the terminal

branch instruction should be scheduled.

One possible solution is as follows. Once the entire path schedule has been gen-
erated, the compiler can go backward &k cycles and insert the terminal branch instruc-
tion. Unfortunately there is no guarantee that no other instruction has been scheduled,
at the required functional unit, &k cycles from the end of the path. In such a case the
compiler could insert the branch instruction k —1 cycles prior to the end of the path and
delay the remaining £ —1 instructions by one cycle. This solution may be acceptable if
the number of instructions that can be issued per cycle is very small. such as one

instruction per cycle.

However, for highly concurrent THUMPER configurations that issue many
instructions per cycle. this solution is inefficient because no other instruction can be
scheduled for the cycle devoted to the inserted branch instruction. Moreover, this solu-
tion may introduce inefficiencies into other paths through the decision tree because the
active code block at k —1 cycles prior to the end of one path may not be the exterior
block for that path, but instead may be an interior block shared by several paths. In

this case the extra cycle introduced to accommodate the terminal branch instruction for

one path causes delays in all other paths that share the interior block into which the

YRS

.m
)

CA AN,

-

e ":'I o

‘
bl e
Ll

RSN
‘v' '/ .f ./ 'l'_'l' [

. l-.'.a -

Lol
[

PR ARE BN R

o)

»
-’

101

branch instruction is inserted.

Instead, we solve this problem by introducing an extra-delay parameter in branch
instructions. The extra-delay parameter specifies the number of additional cycles that
should be added to the normal delay of the branch. The availability of this extra-delay
parameter greatly simplifies the DTS technique and eliminates performance degradation

due to insertion of terminal branch instructions in highly concurrent THUMPER

configurations. With this parameter, the DTS technique simply schedules terminal

branch instructions without considering how long the path may be. Once the path has

P

AN
LRI . “ e
LN
N

been scheduled. the appropriate extra-delay can be computed and written back into the
branch instruction. Naturally, if it turns out that the terminal branch instruction is

less than & cycles from the end of the path, then the path must be padded with the

. | appropriate number of no-operation instructions.
The implementation of the extra-delay parameter is straightforward. The branch

target address is saved in & register along with the value of the extra-delay parameter.

E The extra-delay is counted down by hardware, and the branch target address is

transferred into the program counter when the extra-delay count becomes zero.

*e ‘s e
¢ 2 0 »
PSP)

The extra-delay parameter also simplifies the simple loop scheduling technique

| A
[N
aibele

- described in chapter 3. The SLS technique schedules branches strictly based on resource :
4 w availability and data-dependency constraints, without consideration for the initiation 5
: interval. Therefore the loop-completion branch can be scheduled more, or fewer, than .i}é
k cycles from the end of the modulo reservation table. 9
If the loop-completion branch is scheduled more than & cycles from the end of the
_ MRT, the extra-delay parameter can be used to increase the branch delay. If the loop- ’
e completion branch is scheduled fewer than & cycles from the end of the MRT, the solu- E:i

AR
7 -'. LA "‘

]
PP R R

tion is to concatenate one or more copies of the schedule until the loop-completion

’

;]‘.

O St Bk Wi s Pasl, W P L S . N T T o e T T T T R AT RN T P G O I oy FEE VR RLEL) S5 SN

Sl iy
| { OF)
TEZ

s -

102

Dt M A M
A,
Y EZ &P

~
e
. f.;n
’{ k2

branch is no fewer than k cycles from the end of the MRT, and then use the extra-

L4 I',I'7I.
KRR

delay parameter as appropriate. Note that multiple copies of a complete schedule such e

RO

L
B e,
P

as the one shown in figure 4.5 can be concatenated without change. Therefore, once the

p- SLS algorithm has found a valid schedule for a loop. the branch issues can be quickly

J
-
s
)
LA

‘l -
= ra
. NS
- resolved. A
- - L
- . l‘-.. »
= RSCRAY
. RS .": s
-, s
- . « ¥ -
. ~ e - .‘ -
v. .u. ‘-
N s -
- .. .-h
- WU oo
- "-' P-“ -~
.' '. .‘I
. -
L
.~. - hd
- .h "- -
. .
.
- ‘1 .\' -
A o
- - -...u '-
e

e
v
»
ta

:', . -‘.-.'.-0'
. .

'f'..- .v..n-.-.'- L ..-..I‘--_ -~_~‘»..' RIS L IS B)
S S A, O AR A GRS L T SO S

‘4

D 103
. CHAPTER §
~ CONCLUSIONS
.
5.1. Summary of Results
- We have shown that the performance of scalar code can be improved through the

use of an integrated design philosophy in which the machine organization, instruction
set architecture, and compiler code generation techniques are developed simultaneously.
By concentrating our research efforts on the general nature of scalar code, we have
insured that our techniques are applicable to a wide range of applications, including job
- loads that are dominated by nonnumerical and symbolic computations. The results of
this research suggests that cost-effective techniques can be used to achieve significant
speedup in the context of general purpose computer systems.

Chapter 2 described the decision tree scheduling technique for handling conditional
branch intensive scalar code. The DTS technique is a very general and robust code gen-
eration heuristic that efficiently utilizes concurrency in the form of parallelism and
pipelining to reduce the average execution time of a tree of basic blocks. A key concept
of the DTS technique is the use of guarded jump instructions to allow overlapped exe-
cution of multiple conditional branches, thus reducing the average delay of a condi-
tional branch below tbat which can be provided by hairdware. We have shown that the
DTS technique, when combined with judicial code reglication, achieves significant levels
of speedup on a variety of example program modules.

For a sufficiently large decision tree and a sufficiently parallel machine, the DTS

technique with guarded jumps and stores and selective code replication produces

A SN
T SRS

- schedules that approach the theoretical speedup achievable on a highly parallel, no

JUNSPOR T AL T T L T S T T TR I N S L S O A I L R ., A S S S S S AL ER A R
S B A S N I YA e s 1 At T G R bl A G Gl SRt 18

E»_- T T T ——T—TT—_,—m—w
»
»

104 4

overhead datafiow machine. Thus the DTS technique can be viewed as a static dataflow

technique that captures many of the advantages of dataflow processing without incur-

R ook g

ring the inevitable overhead associated with dynamic dataflow processing.

C'_- Chapter 3 focuses on the problem of code generation for recurrence-intensive loop
. code. With the exception of job loads dominated by numerical computations, the use of
linked data structures is pervasive in most general job loads. The traversal of linked
data structures give rise to numerous recurrences through memory, reducing the :.‘_:
effectiveness of vector and multiprocessor architectures. Horizontal architectures offer
improved performance and cost-effectiveness; however horizontal architectures require =
sophisticated code generation techniques. — =
The the simple loop scheduling technique described in chapter 3 generates optimal
throughput schedules for innermost loops without nested oonditiéml statements. The ﬁ
SLS technique is an adaptation and extension of the theory of optimal design of
hardware pipelines. We have shown that the SLS algorithm produces optimal
throughput schedules in minimal time, i.e. the complexity of the SLS algorithm itself is ﬂ
optimal. B
Architectural support for the proposed scheduling techniques is the subject of
chapter 4. In this chapter we describe a highly concurrent parametric machine model »
that was used to develop the DTS and SLS techniques. We discuss the rationale behind - RO
the design decisions that lead to the choice of machine organization and architecture. ".:: 5
We also discuss several related practical code generation problems including register . L,l
assignment issues. :
In conclusion, this thesis has

(i) pointed out some of the principle problems that must be solved in order to achieve SR

high-speed general-purpose computing, = DEOA

W oPatutylle L7 e £ o DAY 2" sy A bk SaAY FTITI T AR i A, TR G pt et Wk @ @ WV ¥ bp gt &os s @ p s e P N e 4

LY
; N
105 SR
._, (ii) proposed new code optimization techniques for solving some of these problems, i
X ' RO
;& e 25
W IR
i (iii) proposed a machine organization that supports these code optimization techniques P,y
" and can be implemented using current technology. "..
v ix? .
: A
o 5.2. Suggestions for Future Research : 13
". - (WY
l Although we have addressed some of the key problems of high-speed general- &
N L
o« ‘_-.'_n
. purpose computing, solutions to many more problems are necessary before a practical :::_:-:
h [
m O
:j : implementation of a computer system employing the techniques proposed in this thesis st
S
- can be realized. Some of these problems are listed below.
~ o #ultilevel memory hierarchies are a standard feature of modern general-purpose ::E‘_:::;
l:f .- computer systems. Throughout our research we have ignored the problem of page-fault .

handling. Since our techniques are targeted at large-scale application programs that

R
r -
;

- [::'.;;:Z
oA require considerable computing and memory resources, a high-performance solution to :j:':;f'\
S s

the page-fault problem is essential in order to handle such applications. v

[: Modern programming methodologies promote the use of many small procedures. f._:
’ We have ignored the problem of speeding up procedure calls in our research. The DTS :.-LE::'.E
_. technique can be easily extended to convert procedure calls to in-line expansion of the "'-f."l;
_N

called procedure, at the cost of further increasing the amount of replicated code. How- .'::
ever, it is much more desirable if in-line expansion can be limited only to those execu- ‘A . :
tion paths of a procedure that have a high probability of being taken in the context of .'.-
: the specific procedure call site. The use of intelligent procedure expansion techniques is ey

expected to be crucial to the achievement of high performance for object-oriented pro-)

gramming methodologies that rely on extensive use of numerous small procedures.

e et /AR S
el TR e e i
H %
2, 8, !
s
b NND

o, Y.
NS
r R
‘,.. ~ . '~:‘.1
e -~ ~ .9
ae - S
" o)

I I‘
w
L]
-
il

‘ - . - - et et . e e
o e e e m a e e e e s IR O W S I SO L . O L P o e . e e el - N LR ST LI

: A
‘e e e 7 % i e e L e LS e e e e e e e e e o0 e F o PR Tt SR SRR S . .
T T P P N T e e e e e e e e e e e e e e et e e e RECERCIRIRNL T e T Tt et T et e e e R

le‘.l‘ Al S R R T R s T A e L A A A T P R S A S . W N A A I A A L A R AR R

I/

B |

TAANS

%

CORCI]
3 e
P

N
e

L]
-
’

RRTORI
LR A

BN

S . 't'.‘.
e RN
".: N _’-._‘-‘
I'.. -
'.:. .-:'.-:“
> . S
i LX] R
oA - D 1
'_:._. e e e e s e elelatel T LTS P Ry AN AU N S SaNe SN L .. Y
['4 .-’\f‘.—“..\:.' a ~-' .." .'\ "' 2 " S J\. \1\ \:l.'.‘ *a '.A‘LA Y ' \ T \.A 'Ll\'i v, -‘l \.\ ‘¥ o s‘n ‘:.n PRI WL Sl G ok

TR T AR LR RA TA T AT AT AT E LT L ta PR VL T Tl NN LRI TE YR Y YR PR TR TR N TR T T T R T T TR T A R S p T N TR T T T T T

106

As an extension of the guarded store and jump features. some jump instructions
can actually be entirely eliminated by making subsequent guard expressions more com-
plex. This possibility poses an interesting new optimization problem with a variety of
tradeoffs, including code space and rescheduling opportunities. Further, rescheduling
opportunities arise from attempting to use more detailed information about segment-

by-segment pipeline operations that may relax dependency constraints on scheduling.

Finally, throughout this research we have concentrated exclusively on optimiza-
tion techniques that exploit static information about the behavior of programs. It is
well-known that much more precise information, and therefore superior optimization
results, can be achieved if the dynamic behavior of a program is taken into account. We
believe that static and dynamic optimization techniques are complementary, and the
best solution in a system context should involve a combination of both types of tech-

niques.

rE

NI

L

vIF

- -
4y

\

83

R A

Cvem—v & v

e e w vagspy 4

'.,".,”-,’ Ea

',

L

L

(1]
(2]

(3]
(4]
(s}
(6]

(7]

(8]

(9l

(10]

(11]

(12]

(13)
[14]
(15)

[16]

........

Qe
107 v‘?::

REFERENCES N

R. M. Russell, “The CRAY-1 Computer System,” Communications of the ACM. s
vol. 21. pp. 63-72, Jan. 1978. SN

D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360 .
Model 91: Machine Philosophy and Instruction-Handling,” IBM Journal of
Research and Development, vol. 11, pp. 8-24, Jan. 1967.

R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Un-
its,” IBM Journal of Research and Development, vol. 11, pp. 25-33, Jan. 1967.

J. E. Smith, “A Study of Branch Prediction Strategies,” Proc. 8th Annual Interna-
tional Symposium on Computer Architecture, pp. 135-148, 1981.

G. Radin, “The 801 Minicomputer,” Proc. Symposium on Architectural Support for
Programming Languages and Operating Systems, pp. 39-47, Mar. 1982.

o
1]
.
. .

D. A. Patterson and C. H. Sequin, “RISCI: A Reduced Instruction Set VLSI Com- Sk
puter,” Proc. 8th Annual Symposium on Computer Architecture, pp. 443-458, ';_\
May 1981. O
J. Hennessy, N. Jouppi. F. Baskett, T. Gross, and J. Gill, “Hardware/Software AN
Tradeoffs for Increased Performance.” Proc. Symposium on Architectural Support .
for Programming Languages and Operating Systems, pp. 2-11, Mar. 1982. LRI

J. Hennessy. N. Jouppi. S. Przybylski, C. Rowen, T. Gross. F. Baskett, and J. Gill,

TN I S
P At
]

“MIPS: A Microprocessor Architecture,” Proc. 15th Annual Workshop on Mi- &
croprogramming, vol. 13, pp. 17-22, Oct. 1982. 122
J. A. Fisher, “Very Long Instruction Word Architecture and the ELI-512,” Proc. F
10th Annual International Symposium on Computer Architecture. pp. 140-150. S
1983. Iy
E. M. Riseman and C. C. Foster, “The Inhibition of Potential Parallelism by Con- ::::j:'f:
ditional Jumps,” IEEE Transactions on Computers, vol. C-21, pp. 1405-1411, RANAS
Dec. 1972. L
J. L. Hennessy. “VLSI Processor Architecture,” JEEE Transactions on Computers, E"" e
vol. C-33, pp. 1221-1246, Dec. 1984. :":':::3
D. W. Clark and H. M. Levy, “Measurement and Analysis of Instruction Use in ‘_::Z‘_:j'.:w
the VAX-11/780," Proc. 9th Annual Symposium on Computer Architecture, pp. v 1
9-17, Apr. 1982. ROX

T. R. Gross and J. L. Hennessy, “Optimizing Delayed Branches,” Proc. 15th Annu- .
al Workshop on Microprogramming, vel. 13, pp. 114-120, Oct. 1982. :

P. M. Kogge. The Architecture of Pipelined Computers. New York: Hemisphere
Publishing Corporation, 1981.

E. W. Dijkstra, “Guarded Commands, Nondeterminacy, and Formal Derivation
of Programs.” Communications of the ACM, vol. 18, pp. 453-457. Aug. 1975.

D. J. Kuck, The Structure of Computers and Computations. New York: John Wiley
and Sons, 1978.

s e LMt e te e - = R IR Nl e R R i T S PR T T e Yt B S N B I SRS A SR SR S P S IS S
BACAERENE AL A S TG S I I PN DI S Y e e e e e T e T et T N T AN N A

TN

v

LA A

-y 8 8

»
.‘ " l' " ‘.." ',

-
.
" "l

XA

[17)
[18]

[19]

(20]
[21]

[22]

(23]

[24]
[25]

(26]
[27]
(28]

[29]

(30]

[31]

(32]
(33])

(34]

(35]

108

J. E. Thornton, “Parallel Operation in the Control Data 6600,” Proc. AFIPS
Conference, vol. 26, pp. 33-40, 1964.

E. G. Coffman, Computer and Job-Shop Scheduling Theory. New York: Wiley,
1976.

H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling Algorithms for
Efficient Parallel Processing,” IEEE Transactions on Computers, vol. C-33, pp.
1023-1029, Nov. 1984.

J. F. Thorlin, “Code Generation for PIE (Parallel Instruction Execution) Comput-
ers,” Proc. Spring Joint Computer Conference. pp. 641-643, 1967.

J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction,™
IEEE Transactions on Computers, vol. C-30, pp. 478-490, Jul. 1981.

E. W. Davis, Jr., “A Multiprocessor for Simulation Applications,” Dept. of Com-
puter Science Rep. UTUCDCS-R-72-527, University of Illinois at Urbana-
Champaign, Urbana, IL. 1972.

J. E. Smith, “Decoupled Access/Execute Computer Architectures,” Proc. 9th An-
nual International Symposium on Computer Architecturs, pp. 113-119, Apr. 1982.

Cray-1 Reference Manual. Minneapolis: Cray Research Inc., 1976.

F. H. McMahon, FORTRAN CPU Performance Analysis. Livermore, CA:
Lawrence Livermore Laboratories, 1972.

S. Weiss and J. E. Smith, “Instruction Issue Logic in Pipelined Supercomputers,”
IEEE Transactions on Computers, vol. C-33, pp. 1013-1022, Nov. 1984.

S.-C. Chen and D. J. Kuck, “Time and Parallel Processor Bounds for Linear Re-
currence Systems.,” IEEE Transactions on Computers, vol. C-24, Jul. 1975.

D. J. Kuck and R. A. Stokes, “The Burroughs Scientific Processor (BSP),” IEEE
Transactions on Computers, vol. C-31, pp. 363-376, May 1982.

R. G. Cytron, “Compile-Time Scheduling and Optimization for Asynchronous
Machines,” Dept. of Computer Science Rep. UTUCDCS-R-84-1177, University of
Illinois at Urbana-Champaign, Urbana, IL. 1984.

A. E. Charlesworth, “An Approach to Scientific Array Processing: the Architec-
tural Design of the AP-120B/FPS-164 Family,” IEEE Computer, vol. 14, pp. 18-
27, Sep. 1981. .

B. R. Rau, C. D. Glaeser, and R. L. Picard, “Efficient Code Generation for Horizon-
tal Architectures: Compiler Techniques and Architectural Support,” Proc. 9th
Annual International Symposium on Computer Architecture, pp. 131-139, 1982.

S. Even, Graph Algorithms. Maryland: Computer Science Press, 1979.

J. H. Patel and E. S. Davidson, “Improving the Throughput of a Pipelines by
Insertion of Delays.” Proc. 3rd Annual Symposium on Computer Architecture, pp.
159-164. 1976.

A. V. Abho and J. D. Ullman, Principles of Compiler Design. Reading, Mass.:
Addison-Wesley, 1977.

B. R. Rau, P. J. Kuekes, and C. D. Glaeser, “A Statically Scheduled VLSI Inter-
connect for Parallel Processors,” in VLSI Systems and Computations. Computer
Science Press, pp. 389-395, 1981.

[o M7

L
»

TR

o 4

g

L

AR

)

-y
' .

4

»
L)
-

e

L.
‘.

R

5
&
S
" ‘-.
.-‘. -
L.
Ok
..
NI
NN
* -

ot
o o

-

g4 e T ™

(AR
ST ™
[Ty)

Tateie
ol

F

=
P)

Y

ol |
v

Cx°

.
e u
L

P
AN RN
At gty e '-’-“.4 e .

0

il

“un

« v v
Lo R
' .

»

,., .
BT e
PR
[]

RS

e te 4 s
,
1

Fess
b i::

4
r_l

"
P4

.
S
e

v
’

DR A
’
)

.' »
£ % %

s,

PAPAAILIO . r b . A OO A
T T T T T e
h 8N PR ATV AVEV PRy " B - ...‘.---5.\.\.r' el e)y,
£ e
. t-.
1 ...-\..,

“«

o . S
;) a
L] ._u P .
(% \.-.“
! o~ P
. < . |
. nl \},
» oA
” o .n.
- .--H
u! q
= A
P
- 2 pu
¢ o e
> "
: u oy
S N
a‘ .,
m .- Q’
! -3
f Y oy
g S0 s
. .m-J
\-
i
§
3 Q .
) M :
4 o
s “ -N--
... -
B w ...-
\ ‘e R
[+] -
! g
: S
) []
.)
‘ 3
f .
y 2o
; g8
.n) v
y o
f "
<d
. —
/ O
(3]
v (S)
‘
J

w

0 2020 1A 04 SASEL Wt pa Nt A AL S it Rl ARSI KSR AR AEA EA SR A A CA ARSI IR A RN NSA A TA R It i by <
.

-

: .

.. I

L)

r

o
Lo a"‘i‘

110

(g

VITA

Peter Yan-Tek Hsu was born on October 16, 1958 in Hong Kong. He left high
school after the sophomore year to attend the University of Minnesota and received a
Bachelor of Computer Science degree in 1979. He then entered the University of Illinois

and received a Master of Science in Computer Science in 1982. Upon completion of the

Doctor of Philosophy degree, he will join L.B.M. Research in Yorktown Heights. New _ i:f::;:."

York. G e
AR

During his undergraduate studies at the University of Minnesota, Peter Hsu was a R
U

teaching assistant at the Department of Computer Science from 1976 to 1979 and also a hO!

research assistant at the Department of Psychology from 1977 to 1979. He was

T
i

employed by Sperry Univac in the summer of 1979. While pursuing graduate studies

at the University of Illinois, he was a teaching assistant at the Department of Computer

Science from 1979 to 1980. and a research assistant at the Coordinated Science Labora- | r:

E tory from 1980 to 1985.
8 RO
s .

._"...-‘
w vaY
!-—:‘-
d K
A
. '.. .
.- e
. W
B F*
s
A
LA A
w .h -5
= :‘ --‘
- -
_\)ﬂ
- \ o
L0
ca . 'a
P
h b
:".;\
LSRN
A
ALY
---------- - - - - - - - . - - Al - - - g - - A
BT e P T e e e R R R D R N A N N R e T e e e TR A
R e e e e e e e e e N e o R R, EIPRE PRI Ty Dl IR S SR A B) SR S G)

S

AT AT e e PR SRR IR S
t:‘{.ir.'.:“.{‘c e e '.’.‘-\L"l 'ﬁ“‘:ﬁ'i‘-‘u PRSI Y ‘.A.'.e__“_‘;_;.‘

